Problem

Source: Olimphíada 2024 - Problem 4

Tags: geometry



Let $ABC$ be a triangle, $I$ its incenter and $I_a$ its $A$-excenter. Let $\omega$ be its circuncircle and $D$ be the intersection of $AI$ and $\omega$. Let some line $r$ through $D$ cut $BC$ in $E$ and $\omega$ in $F$. The lines $IE$ and $I_aE$ intersect $I_aF$ and $IF$ in $P$ and $Q$, respectively. Furthermore, the circles $PII_a$ and $QII_a$ intersect $I_aE$ and $IE$ in $R$ and $S$, respectively. Prove that there is a circle passing through $F,E,R$ and $S$.