Problem

Source: SRMC 2023, P4

Tags: algebra, polynomial, Multivariable



Let $\mathcal{M}=\mathbb{Q}[x,y,z]$ be the set of three-variable polynomials with rational coefficients. Prove that for any non-zero polynomial $P\in \mathcal{M}$ there exists non-zero polynomials $Q,R\in \mathcal{M}$ such that \[ R(x^2y,y^2z,z^2x) = P(x,y,z)Q(x,y,z). \]