Problem

Source: USA Team Selection Test for IMO 2024, Problem 1

Tags: USA TST 2024, USA TST, algebra



Find the smallest constant $C > 1$ such that the following statement holds: for every integer $n \geq 2$ and sequence of non-integer positive real numbers $a_1, a_2, \dots, a_n$ satisfying $$\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} = 1,$$it's possible to choose positive integers $b_i$ such that (i) for each $i = 1, 2, \dots, n$, either $b_i = \lfloor a_i \rfloor$ or $b_i = \lfloor a_i \rfloor + 1$, and (ii) we have $$1 < \frac{1}{b_1} + \frac{1}{b_2} + \cdots + \frac{1}{b_n} \leq C.$$(Here $\lfloor \bullet \rfloor$ denotes the floor function, as usual.) Merlijn Staps