Problem

Source: 2023 Girls in Mathematics Tournament- Level B, Problem 3

Tags: combinatorics



Let $S$ be a set not empty of positive integers and $AB$ a segment with, initially, only points $A$ and $B$ colored by red. An operation consists of choosing two distinct points $X, Y$ colored already by red and $n\in S$ an integer, and painting in red the $n$ points $A_1, A_2,..., A_n$ of segment $XY$ such that $XA_1= A_1A_2= A_2A_3=...= A_{n-1}A_n= A_nY$ and $XA_1<XA_2<...<XA_n$. Find the least positive integer $m$ such exists a subset $S$ of $\{1,2,.., m\}$ such that, after a finite number of operations, we can paint in red the point $K$ in the segment $AB$ defined by $\frac{AK}{KB}= \frac{2709}{2022}$. Also, find the number of such subsets for such a value of $m$.