Problem

Source: RMM Extralist 2021 A2

Tags: interpolation, RMM Shortlist, algebra, polynomial



Let $n$ be a positive integer and let $x_1,\ldots,x_n,y_1,\ldots,y_n$ be integers satisfying the following condition: the numbers $x_1,\ldots,x_n$ are pairwise distinct and for every positive integer $m$ there exists a polynomial $P_m$ with integer coefficients such that $P_m(x_i) - y_i$, $i=1,\ldots,n$, are all divisible by $m$. Prove that there exists a polynomial $P$ with integer coefficients such that $P(x_i) = y_i$ for all $i=1,\ldots,n$.