Let $ABC$ be a triangle with incenter $I$. The line through $I$, perpendicular to $AI$, intersects the circumcircle of $ABC$ at points $P$ and $Q$. It turns out there exists a point $T$ on the side $BC$ such that $AB + BT = AC + CT$ and $AT^2 = AB \cdot AC$. Determine all possible values of the ratio $IP/IQ$.
Problem
Source: RMM Extralist 2021 G2
Tags: geometry, RMM Shortlist, Inversion, similarities, Bashing, incenter, circumcircle
19.09.2023 15:52
21.09.2023 22:45
Amazing problem! Here is another synthetic solution.
07.07.2024 23:25
Complex bash with $(ABC)$ unit circle. Set $A=a^2$, etc. such that the incenter is $j=-ab-ac-bc$ and the $A$-excenter is $j_A=ab+ac-bc$. Obviously, $T$ is the extouch point on side $BC$, which can be calculated as the average of $I_A$ and its reflection over $BC$. $a^2-t=\frac{j_a+b^2+c^2-b^2c^2\overline{j_A}}2=a^2-\frac{ab+ac-bc+b^2+c^2-b^2c^2(\overline{ab+ac-bc})}2=\frac{2a^3-(b+c)a^2-(b^2+c^2)a+bc(b+c)}{2a}=\frac{(2a+b+c)(a-b)(a-c)}{2a}$ Since $AT^2=AB\cdot AC$, we have \begin{align*} (a^2-t)\overline{(a^2-t)}&=\frac{(a^2-b^2)(a^2-c^2)}{a^2bc}\\ \frac{(2a+b+c)(a-b)(a-c)}{2a}\cdot\frac{(ab+ac+2bc)(a-b)(a-c)}{2a^2b^2c^2}&=\frac{(a^2-b^2)(a^2-c^2)}{a^2bc}\\ (2a+b+c)(ab+ac+2bc)(a-b)(a-c)&=4abc(a+b)(a+c)\\ (b+c)(2a^4-(b+c)a^3-(b^2+6bc+c^2)a^2-bc(b+c)a+2b^2c^2)=0 \end{align*}Since $b+c$ cannot equal $0$ (or $B$ and $C$ would be equal). We now prove that $\frac{p-j}{q-j}+\frac{q-j}{p-j}=-\frac52$, from which it follows that the desired ratio is either $2$ or $\frac12$. We have that $p$ and $q$ are solutions to \begin{align*} \frac{z-j}{a^2-j}=-\frac{\overline z-\overline j}{\overline{a^2}-\overline j}\\ (z-j)+a^2bc(1/z-\overline j)&=0 \end{align*}By Vieta's, we have $pq=a^2bc$ and $p+q=j+a^2bc\overline j$. \begin{align*} \frac{p-j}{q-j}+\frac{q-j}{p-j}&\stackrel?=-\frac52\\ 2((p-j)^2+(q-j)^2)+5(p-j)(q-j)&\stackrel?=0\\ 2(p+q)^2-4pq-4(p+q)j+4j^2+5pq-5(p+q)j+5j^2&\stackrel?=0\\ 2(j+a^2bc\overline j)^2+a^2bc-9(j+a^2bc\overline j)j+9j^2&\stackrel?=0\\ 2(a^2+2ab+2ac+bc)^2+a^2bc-9(ab+ac+bc)(a^2+ab+ac)&\stackrel?=0 \end{align*}And the expansion of the left hand side is $2a^4-(b+c)a^3-(b^2+6bc+c^2)a^2-bc(b+c)a+2b^2c^2=0$, so we're done.
27.12.2024 19:03
By Stewart's Theorem, $(s-b)a(s-c)+bca=b^2(s-c)+c^2(s-b)$, which rearranges to $a^3-3(b-c)^2a-2(b+c)(b-c)^2=0$. By Power of a Point, $IP\cdot IQ=2Rr$, and $IP-IQ$ is twice the distance from $O$ to $AI$, which is the distance from $A$ to the midpoint of arc $BAC$, or $2R\sin\left(\frac{B-C}2\right)$. Therefore, we have \begin{align*} \frac{(IP-IQ)^2}{IP\cdot IQ}&=\frac{2R\sin^2\left(\frac{B-C}2\right)}r\\ &=\frac{R(1-\cos(B-C))}r\\ &=\frac{abc(1-\cos(B-C))}{4(s-a)(s-b)(s-c)}\\ &=\frac{abc}{4(s-a)(s-b)(s-c)}\left(1-\cos B\cos C-\sin B\sin C\right)\\ &=\frac{abc}{4(s-a)(s-b)(s-c)}\left(1-\frac{a^4-(b^2-c^2)^2}{4a^2bc}-\frac{bc}{4R^2}\right)\\ &=\frac{abc}{4(s-a)(s-b)(s-c)}\left(1-\frac{a^4-(b^2-c^2)^2}{4a^2bc}-\frac{4A^2}{a^2bc}\right)\\ &=\frac{abc}{4(s-a)(s-b)(s-c)}\left(\frac{4a^2bc-a^4+(b^2-c^2)^2-16A^2}{4a^2bc}\right)\\ &=\frac{abc}{4(s-a)(s-b)(s-c)}\left(\frac{(b-c)^2((b+c)^2-a^2)}{2a^2bc}\right)\\ &=\frac{(b-c)^2(b+c-a)(b+c+a)}{8a(s-a)(s-b)(s-c)}\\ &=\frac{(b-c)^2(a+b+c)}{a(a+b-c)(a-b+c)}\\ &=\frac{(b-c)^2(a+b+c)}{a^3-3(b-c)^2a-2(b+c)(b-c)^2+2(b-c)^2(a+b+c)}\\ &=\frac12. \end{align*} Therefore, $\frac{IP}{IQ}$ can be either $\boxed{\frac12}$ or $\boxed2$.