$P$ is a point inside $\triangle ABC$. $AP, BP, CP$ intersects $BC, CA, AB$ at $D, E, F$, respectively. $AD$ meets $(ABC)$ again at $D_1$. $S$ is a point on $(ABC)$. Lines $AS$, $EF$ intersect at $T$, lines $TP, BC$ intersect at $K$, and $KD_1$ meets $(ABC)$ again at $X$. Prove that $S, D, X$ are colinear.
Problem
Source: IMOC 2023 G2
Tags: geometry
Resolut1on07
10.09.2023 10:17
Hint:
Just use two lemma:
Lemma 1: Let $\triangle ABC$, $D$ be the point on $(ABC)$. $AD$ cut $BC$ at S. Then $\frac{SB}{SC}=\frac{AB}{AC}. \frac{DB}{DC}.$
Lemma 2: Let $\triangle ABC$, $D$ be the point on $BC$. Then $\frac{DB}{DC}=\frac{\sin DAB}{\sin DAC}.\frac{AB}{AC}$
Resolut1on07
10.09.2023 11:19
This problem can be solve by another way by cross ratio :V
Resolut1on07
13.09.2023 18:33
Solve
Call S' is the intersection of AS and BC.
Define$ f(X)=\frac{XB}{XC}$ for any point X.
By Lemma 1: We have $f(D)=f(D_1)f(A)$ and we need to prove $f(D)=f(S).f(X)$
We got: $f(K)=f(D_1).f(X)$ and $f(S')=f(S).f(A)$
So we need to prove : $f(D)^2 = f(S').f(K)$
By Lemma 2: We have $f(S')=\frac{S'B}{S'C}=\frac{\sin FAT}{\sin EAT} \frac{AB}{AC}=\frac{TF.AE}{TE.AF} \frac{AB}{AC}$
In additon: $f(K)= \frac{\sin KPB}{\sin KPC} \frac{PB}{PC} = \frac{\sin EPT}{\sin FPT} \frac{PB}{PC} =\frac{TE.PF}{TF.PE} \frac{PB}{PC}$
From these two ratio above we have $f(S').f(K)=\frac{PF.PE.AE.AF}{PB.PC.AB.AC}$
Use Lemma 2 for triangle $EPC$ with $A$ on line $EC$ we have:
$\frac{AE}{AC}=\frac{\sin APE}{\sin APC} . \frac{PE}{PC} $
Similar we have $\frac{AF}{AB}= \frac{\sin FPA}{\sin BPA} . \frac{PF}{PB} $
So $f(S').f(K)=(\frac{AE}{AC} \frac{AF}{AB})^2 $
Now it is easy, any mistake ?