Let $a, b>1$ be reals such that $a+\frac{1}{a^2} \geq 5b-\frac{3}{b^2}$. Show that $a>5b-\frac{4}{b^2}$.
Problem
Source: St. Petersburg 2023 9.1
Tags: inequalities
12.08.2023 16:46
Let $a, b\geq1$ and $a+\frac{1}{a^2} \geq 5b-\frac{3}{b^2}$. Show that $$a\geq(k+1)b-\frac{k}{b^2}$$Where $0<k\leq 4$ here
Attachments:

12.08.2023 17:03
a_507_bc wrote: Let $a, b>1$ be reals such that $a+\frac{1}{a^2} \geq 5b-\frac{3}{b^2}$. Show that $a>5b-\frac{4}{b^2}$.
12.08.2023 17:31
Suppose the contrary. Then, \[ 5b-\frac{4}{b^2}+\frac{1}{a^2}\ge a+\frac{1}{a^2}\ge 5b-\frac{3}{b^2}, \]yielding $b\ge a$. But then, \[ a+\frac{1}{a^2}\ge 5b-\frac{3}{b^2}\ge 5a-\frac{3}{a^2}\Rightarrow \frac{4}{a^2}\ge 4a, \]yielding $1\ge a$, a contradiction,
13.08.2023 02:31
For the collection. Given three real number $ k \ge \frac{1}{3} $ and $ a,b \ge 1 $ such that $ :a+\frac{1}{a^2} \ge (k+1)b-\frac{k-1}{b^2} $.Prove that :$$a \ge (k+1)b-\frac{k}{b^2}.$$ .