Consider a cyclic quadrilateral $ABCD$ in which $BC = CD$ and $AB < AD$. Let $E$ be a point on the side $AD$ and $F$ a point on the line $BC$ such that $AE = AB = AF$. Prove that $EF \parallel BD$.
Source: Greece JBMO TST 2023 P2
Tags: geometry, cyclic quadrilateral
Consider a cyclic quadrilateral $ABCD$ in which $BC = CD$ and $AB < AD$. Let $E$ be a point on the side $AD$ and $F$ a point on the line $BC$ such that $AE = AB = AF$. Prove that $EF \parallel BD$.