The equation $x^3-3x^2+1=0$ has three real solutions $x_1<x_2<x_3$. Show that for any positive integer $n$, the number $\left\lceil x_3^n\right\rceil$ is a multiple of $3$.
Problem
Source: Germany 2023, Problem 6
Tags: algebra, number theory proposed, algebra proposed, ceiling function, cubic equation
16.06.2023 20:26
Denote $P(x)=x^3-3x^2+1$. $P(-1)<0,\,P(0)>0,\;P(1)<0\Longrightarrow x_1\in(-1,0);\;x_2\in(0,1)$. $P(2)<0,\,P(3)>0\Longrightarrow x_3\in(2,3)$. A more precise calculus gives us: $x_1\in\left(-\dfrac{6}{10},-\dfrac{5}{10}\right);\;x_2\in\left(\dfrac{6}{10},\dfrac{7}{10}\right)$. Results: $|x_2|>|x_1|\Longrightarrow x_1^n+x_2^n>0,\;\forall n\in\mathbb{N}$; $x_1^n+x_2^n\le|x_1^n|+|x_2^n|\le|x_1^2|+|x_2^2|<\dfrac{36}{100}+\dfrac{49}{100}<1,\;\forall n\ge2$, hence $0<x_1^n+x_2^n<1,\;\forall n\ge2$. For $n=1:\;x_1\in(2,3)\Longrightarrow \lceil x_3\rceil=3\Longrightarrow 3|\lceil x_3\rceil$. For $n=2$: Using the Vieta's relations: $x_1+x_2+x_3=3;\;x_1x_2+x_2x_3+x_3x_1=0\Longrightarrow$ $\Longrightarrow x_1^2+x_2^2+x_3^2=(x_1+x_2+x_3)^2-2(x_1x_2+x_2x_3+x_3x_1)=9\Longrightarrow$ $\Longrightarrow x_3^2=9-(x_1^2+x_2^2)\in(8,9)\Longrightarrow \lceil x_3\rceil=9\Longrightarrow 3|\lceil x_3\rceil$. For $n\ge3$: Denote $S_k=x_1^k+x_2^k+x_3^k$. We prove by induction: $S_k>S_{k-1};\;S_k\in\mathbb{N}$ and $3|S_k,\;\forall k\in\mathbb{N},\; k\ge3$. The initial step: $S_1=3;\;S_2=9$. $P(x_1)=0\Longrightarrow x_1^3=3x_1^2-1$ and similar for $x_2,x_3\Longrightarrow S_3=3S_2-3=24>S_2>S_1;\;3|S_3$. The induction step: let be $k\ge3$. Assume $S_{k-2},S_{k-1},S_k\in\mathbb{N}$ and $S_{k-2}<S_{k-1}<S_k$ and $3|S_{k-2};\;3|S_{k-1};\;3|S_{k}$. $P(x_1)=0\Longrightarrow x_1^3=3x_1^2-1$ and similar for $x_2,x_3\Longrightarrow$ $\Longrightarrow x_1^{k+1}=3x_1^k-x_1^{k-2}$ and similar for $x_2,x_3\Longrightarrow$ $\Longrightarrow S_{k+1}=3S_k-S_{k-2}>2S_k>S_k;\;S_{k+1}=3S_k-S_{k-2}\in\mathbb{N}$ and $3|S_{k+1}$. Denote $S_n=x_1^n+x_2^n+x_3^n=3M_n$, with $M_n\in\mathbb{N}$. Results: $x_3^n=3M_n-(x_1^n+x_2^n)\in(3M_n-1,3M_n)$, since $0<x_1^n+x_2^n<1$. Results: $\lceil x_3^n\rceil=3M_n$, hence $3|\lceil x_3^n\rceil$.
16.06.2023 20:36
Solved with L567, starchan, Siddharth03. The idea is quite clear so this may be a little easy for a 3/6 but oh well. The underlying intuition is that $F_n = \lceil \frac{\varphi^n}{\sqrt{5}} \rceil$ where $F_n$ is the Fibonacci sequence.
The key idea is the following, presented linearly it may not make sense for somebody who has never seen the idea. Define $a_n = x_1^n+x_2^n+x_3^n$. $\textbf{Lemma 1: Recursion}$ $a_{n+3}-3a_{n+2}+a_n = 0$ for all $n \in \mathbb{Z}_{\geq 0}$
Now, we work with this recursion.
We have the following two lemmas to finish. $\textbf{Lemma 2: Mod 3}$ $a_n \in \mathbb{Z}$ and $3 \mid a_n$ for all $n \in \mathbb{Z}_{\geq 0}$
$\textbf{Lemma 3: Ceiling Matches Recursive Sequence}$ $a_n = \lceil x_3^n \rceil$
We know that $3 \mid a_n = \lceil x_3^n \rceil$ for $n \geq 1$ due to the $\textbf{Lemma 2}$ and $\textbf{Lemma 3}$ are therefore done!! $\blacksquare$ $\blacksquare$
17.06.2023 10:17
Didn't expect to solve a six on my first final, p4 gave me more trouble than this problem. The following solution uses Newton sums as the main idea. Claim 1: $f$ has a root on the interval $(-\frac{1}{\sqrt3},0)$.
Claim 2: $f$ has a root on the interval $(\frac{1}{\sqrt3},\frac{1}{\sqrt[3]{3}})$.
Now we notice that $f(3)=1>0$, so there must be another zero in $[\frac{1}{\sqrt[3]{3}},3)$. Thus, \[x_1\in (-\frac{1}{\sqrt3},0), x_2\in (\frac{1}{\sqrt3},\frac{1}{\sqrt[3]{3}}), x_3\in [\frac{1}{\sqrt[3]{3}},3)\]Now, notice that $x_1+x_2<\frac{1}{\sqrt[3]{3}}<1$. By Vieta's formula , $3> x_3=3-(x_1+x_2)>2$, so $\lceil x_3\rceil=3.$ Although we can prove inductively that the following idea works, we may as well cite the theorem all together:
Cleary, the first few cases $p_1=3,P_2=9,p_3=24$ are clear. Then, \[p_{k+1}=3p_k-p_{k-2}\]so $3\mid p_{k+1}$ by induction. As $x_1>-\frac{1}{\sqrt{3}}$ and $x_2>\frac{1}{\sqrt{3}}$, we have $x_1^n+x_2^n>0$. Also, $x_1^n+x_2^n<|\frac{1}{\sqrt{3}^n}|+\frac{1}{\sqrt[3]{3}^n}<1$ for $n\ge 2$. Hence \[p_n>x_3^n=p_n-(x_1^n-x_2^n)>p_n-1\]for all $n\ge 2$. Thus, $\lceil x_3^n\rceil=p_n$, and the conclusion follows.