Show that there exists a positive constant $C$ such that, for all positive reals $a$ and $b$ with $a + b$ being an integer, we have $$\left\{a^3\right\} + \left\{b^3\right\} + \frac{C}{(a+b)^6} \le 2. $$Here $\{x\} = x - \lfloor x\rfloor$ is the fractional part of $x$. Proposed by Li4 and Untro368.
Problem
Source: 2023 Taiwan TST Round 3 Independent Study 1-A
Tags: integer and fractional part, algebra
26.04.2023 11:37
Find out the largest constant $C \in \mathbb{R}^+$, so that if $a+b \in \mathbb{N}^+$, where $a,b \in \mathbb{R}^+$, we have $$\left \{ a^2 \right \}+\left \{ b^2 \right \} \le 2 - \frac{C}{\left ( a+b \right )^2}.$$Where $\left \{ . \right \}$ denotes the fractional part. 2018 Peking University Summer Camp https://artofproblemsolving.com/community/c6h1885856p12848213 https://artofproblemsolving.com/community/c6h1696769p10880563 https://artofproblemsolving.com/community/c6h2407965p19740400
22.05.2023 08:27
Nice problem! Let $N=a+b \in \mathbb{N}^+$.
31.05.2023 12:28
In general, one can show in a similar way that for any $k$ there exists a constant $C_k$ such that whenever $a,b>0$ with $a+b$ an integer, then \[\{a^k\}+\{b^k\}+\frac{C}{(a+b)^{k^2-k}} \le 2.\]