There are $n \ge 3$ positive real numbers $a_1, a_2, \dots, a_n$. For each $1 \le i \le n$ we let $b_i = \frac{a_{i-1} + a_{i+1}}{a_i}$ (here we define $a_0$ to be $a_n$ and $a_{n+1}$ to be $a_1$). Assume that for all $i$ and $j$ in the range $1$ to $n$, we have $a_i \le a_j$ if and only if $b_i \le b_j$. Prove that $a_1 = a_2 = \dots = a_n$.
Problem
Source: EGMO 2023/1
Tags: EGMO, EGMO 2023
17.04.2023 01:00
Let $m=\min(a_1,\ldots,a_n)$ and $M=\max(a_1,\ldots,a_n)$. Assume FTSOC that $M>m$. Then, there must exist an index $i$ such that $a_i=m$ and $\max(a_{i-1},a_{i+1})>m$, giving $b_i>2$. Similarly, there must exist an index $j$ such that $a_j=M$ and $\min(a_{j-1},a_{j+1})<M$, giving $b_j<2$. This means $a_i<a_j$ and $b_i>2>b_j$, a contradiction. Therefore, we have $M=m$, so $a_1=\cdots=a_n$.
17.04.2023 01:01
From the given condition we get that $(b_{i+1}-b_i)(a_{i+1}-a_{i})\geq 0$ for $i=1,..,n$. Hence $\sum_{i=1}^n(b_{i+1}-b_i)(a_{i+1}-a_{i})\geq 0\Leftrightarrow $ $\Leftrightarrow\sum_{i=1}^nb_{i+1}a_{i+1}-\sum_{i=1}^nb_{i+1}a_i-\sum_{i=1}^nb_ia_{i+1}+\sum_{i=1}^na_ib_i\geq 0$ $\Leftrightarrow 2\sum_{i=1}^na_i\dfrac{a_{i-1}+a_{i+1}}{a_i}\geq \sum_{i=1}^na_i\dfrac{a_i+a_{i+2}}{a_{i+1}}+\sum_{i=1}^na_{i+1}\dfrac{a_{i-1}+a_{i+1}}{a_i}\Leftrightarrow$ $\Leftrightarrow 4\sum_{i=1}^n a_i\geq \sum_{i=1}^n \dfrac{a_i^2+a_ia_{i+2}}{a_{i+1}}+\sum_{i=1}^n\dfrac{a_{i+2}^2+a_ia_{i+2}}{a_{i+1}}\Leftrightarrow$ $\Leftrightarrow 4\sum_{i=1}^n a_i\geq \sum_{i=1}^n \dfrac{(a_i+a_{i+2})^2}{a_{i+1}}\overset{C-S}{\geq }\dfrac{4\left (\displaystyle \sum_{i=1}^n a_i \right )^2}{\displaystyle \sum_{i=1}^n a_i}=4\sum_{i=1}^n a_i$ so $\dfrac{a_i+a_{i+2}}{a_{i+1}}$ must be constant, i.e $b_1=b_2=..=b_n$. Now since $b_i\geq b_j$ and $b_j\geq b_i$ for all $i,j$ we get $a_i\geq a_j$ and $a_j\geq a_i$ for all $i,j$ and the result follows.
17.04.2023 10:27
Let $b_k = \max(b_1,\dots, b_n)$. For any $i$, $b_k \ge b_i \implies a_k \ge a_i$, and hence $a_k \ge a_{k-1}$ and $a_k \ge a_{k+1}$. Hence, $b_k= \frac{a_{k-1} + a_{k+1}}{a_k} \le 2$. Also, $b_k\cdot n \ge \sum_{i=1}^{n} b_i = \sum_{i=1}^{n} \frac{a_{i-1}}{a_i} + \sum_{i=1}^{n} \frac{a_{i+1}}{a_i} \overset{\text{AM-GM}}{\ge} n + n = 2n \dots [\clubsuit]$. Hence $b_k \ge 2$. Hence, we must have $b_k=2$. Hence, all equalities must hold in $[\clubsuit]$ and hence $a_1=a_2=\dots=a_n$ and we are done!
17.04.2023 11:45
for any $k\in[n]$, $\sum_{i =1}^n a_ib_i \ge \sum_{i =1}^n a_ib_{i+k}$, then sum by $k$, $2n\sum_{i =1}^na_i\ge \sum_{k=1}^n\sum_{i =1}^n a_ib_{i+k}=\sum_{i =1}^n a_i\sum_{k=1}^nb_k$, $\sum_{k=1}^nb_k\le 2n$, but it $\ge2n$, same as #4.
17.04.2023 14:02
17.04.2023 15:17
Same as #2.
17.04.2023 17:18
lol Suppose that the $a_i$ are not all equal and pick some minimal $a_i$ such that $a_{i-1}$ is not minimal (this clearly exists). Then pick $a_j$ such that $a_j$ is maximal. We have $$a_i \leq a_j \implies \frac{a_{i-1}+a_{i+1}}{a_i} \leq \frac{a_{j-1}+a_{j+1}}{a_j} \implies \frac{a_{i-1}+a_i}{a_i}\leq \frac{a_j+a_j}{a_j} \implies \frac{a_{i-1}}{a_i} \leq 1,$$contradiction. $\blacksquare$
17.04.2023 18:21
17.04.2023 19:21
The given condition gives that $\{a_i\},\{b_i\}$ are similarly ordered , so Chebyshev gives $$\frac{\sum{a_i}}{n}\frac{\sum{b_i}}{n}\leq \frac{\sum{a_ib_i}}{n} =\frac{\sum{a_{i+1}+a_{i-1}}}{n}=2\frac{\sum{a_i}}{n} \implies \sum{b_i} \leq 2n $$But $$\sum{b_i}\geq \sum{2\frac{\sqrt{a_{i+1}a_{i-1}}}{a_i}}\geq 2n $$by AM GM .Thus equality holds everywhere and we are done
17.04.2023 20:14
Basically the same as everyone else XD Let $i$ and $j$ be such that $a_i$ and $a_j$ are respectively the min and the max of the $a_k$'s. The we have $b_i=\frac{a_{i-1}+a_{i+1}}{a_i}\ge \frac{a_i+a_i}{a_i}\ge 2$. And $b_j=\frac{a_{j-1}+a_{j+1}}{a_j}\le \frac{a_j+a_j}{a_j}\le 2$. This implies that $b_i\ge b_j$, so in fact we have $a_i\ge a_j$, which means that the maximum value of the $a_k$'s is smaller than the smallest one, and from this it follows that $a_1=a_2=\ldots=a_n$. $\square$
17.04.2023 20:33
17.04.2023 20:38
Assume that there exists $i \in \{1, \dots, n\}$ such that $a_i$ is minimal. Then \[b_i = \frac{a_{i-1} + a_{i+1}}{a_i} \geq \frac{a_i + a_i}{a_i} = 2. \]From \begin{align*} a_{i} \leq a_{i+1} &\Longleftrightarrow b_{i} \leq b_{i+1} \\ &\Longleftrightarrow 2 \leq \frac{a_i + a_{i+2}}{a_{i+1}} \leq 1 + \frac{a_{i+2}}{a_{i+1}} \\ &\Longleftrightarrow a_{i+1} \leq a_{i+2} \end{align*}we inductively deduce that $ a_{i} \leq a_{i+1} \leq \cdots \leq a_{i-1} \leq {a_i}$, as desired.
17.04.2023 20:54
Let $m=\min(a_1\cdots a_n)$ and $M=\max(a_1\cdots a_n).$ Then, $$b_{index(M)}=\frac{a_{index(M)-1}+a_{index(M)+1}}{M}\leq \frac{M+M}{M}=2=\frac{m+m}{m}\leq \frac{a_{index(m)-1}+a_{index(m)+1}}{m}=b_{index(m)}.$$Thus, since the condition implies $b_{index(M)}\geq b_{index(m)}$, equality must hold, $a_{index(M)-1}=a_{index(M)+1}=M$, so both neighbors of the maximum are also equal to the maximum. However, we can then repeat this process with one of the new maximum numbers, all the way until we get that every number in the circle is equal to the maximum, QED.
25.04.2023 01:00
Let $a_M = \max(a_1,a_2,...,a_n)$, and $a_m = \min(a_1,a_2,...,a_n)$ then, $$b_M = \frac{a_{M-1}+ a_{M+1}}{a_M}$$$$b_m = \frac{a_{m-1}+ a_{m+1}}{a_m}$$Now, $a_M \geq a_{M-1}$ and $a_M \geq a_{M+1} \implies 2 \geq b_M $. Similarly l, $b_m \geq 2$. Hence $2 \geq b_M \geq b_m \geq 2 \implies b_M=b_m \implies a_M=a_m$. Hence $a_1 = a_2 = \dots = a_n$
11.05.2023 08:27
For the sake of contradiction, assume $\min\{a_1, a_2, \dots, a_n\} \neq \max\{a_1, a_2, \dots, a_n \}.$ This implies there exists $a_i$ that is minimum such that $\max\{a_{i-1}, a_{i+1}\} > a_i.$ Similarly, we also know there exists $a_j$ that is maximal such that $\min\{a_{j-1}, a_{j+1}\} <a_j.$ Observe \[b_i = \frac{a_{i-1}+a_{i+1}}{a_i} > 2 \text{ and } b_j = \frac{a_{j-1}+a_{j+1}}{a_j} <2.\]But since $a_i<a_j,$ we know $2>b_i<b_j<2,$ absurd. The result follows.
07.06.2023 17:25
Let $m=\min(a_i)$, and $M=\max(a_i)$. The key is the following observation. Lemma: If $a_i=m$ and $a_j=M$, then $a_{i-1}=a_{i+1}=m$ and $a_{j-1}=a_{j+1}=M$. Proof: Since $a_i=m\leq M=a_j$, we know that $b_i\leq b_j$. But then $$2=\frac{m+m}{m}\leq \frac{a_{i-1}+a_{i+1}}{a_i}\leq \frac{a_{j-1}+a_{j+1}}{a_j}\leq \frac{M+M}{M}=2,$$so equality must hold, and the lemma follows. $\square$ Now the problem is clear. Start from any $a_i=m$ and $a_j=M$, to eventually find that all values of the sequence are simultaneously equal to $m$ and $M$, i.e the sequence is constant.
21.08.2023 03:13
Assume FTSOC that the $a_i$ are not all equal. Then, there exist an $i$ such that $a_i$ is the maximum of the sequence and a $j$ such that $a_j$ is the minimum of the sequence, and $a_i \neq a_j$ from our assumption. Then, first note that we have $b_i=\frac{a_{i-1}+a_{i+1}}{a_i} \leq \frac{a_j+a_j}{a_j}=2$. We also have $b_j=\frac{a_{j-1}+a_{j+1}}{a_j} \geq \frac{b_j+b_j}{b_j}=2$, so we can actually combine our two inequalities to obtain $2 \geq b_i \geq b_j \geq 2$, so in fact this is an equality and $b_i=b_j$, which implies $a_i=a_j$, contradiction. Thefore, all the $a_i$ are equal. $\blacksquare$
24.12.2023 20:00
30.09.2024 12:44
16.10.2024 22:07