Problem

Source: Caucasus MO 2023, senior, day 2, P8

Tags: geometry



Let $ABC$ be an acute-angled triangle, and let $AA_1, BB_1, CC_1$ be its altitudes. Points $A', B', C'$ are chosen on the segments $AA_1, BB_1, CC_1$, respectively, so that $\angle BA'C = \angle AC'B = \angle CB'A = 90^{o}$. Let segments $AC'$ and $CA'$ intersect at $B"$; points $A", C"$ are defined similarly. Prove that hexagon $A'B"C'A"B'C"$ is circumscribed.