Problem

Source: 4th Memorial Mathematical Competition "Aleksandar Blazhevski - Cane"- Senior D1 P3

Tags: geometry, cyclic quadrilateral, complete quadrilateral, tangent circles, angle bisector



Let $ABCD$ be a cyclic quadrilateral inscribed in a circle $\omega$ with center $O$. The lines $AD$ and $BC$ meet at $E$, while the lines $AB$ and $CD$ meet at $F$. Let $P$ be a point on the segment $EF$ such that $OP \perp EF$. The circle $\Gamma_{1}$ passes through $A$ and $E$ and is tangent to $\omega$ at $A$, while $\Gamma_{2}$ passes through $C$ and $F$ and is tangent to $\omega$ at $C$. If $\Gamma_{1}$ and $\Gamma_{2}$ meet at $X$ and $Y$, prove that $PO$ is the bisector of $\angle XPY$. Proposed by Nikola Velov