Given is an equilateral triangle ABC with circumcenter O. Let D be a point on to minor arc BC of its circumcircle such that DB>DC. The perpendicular bisector of OD meets the circumcircle at E,F, with E lying on the minor arc BC. The lines BE and CF meet at P. Prove that PD⊥BC.
Problem
Source: Iberoamerican 2022, Day 1, P1
Tags: geometry
29.09.2022 15:48
Triangles ODE and ODF are equilateral and now quick angle chase shows BD⊥CP and CD⊥BP, so D is the orthocenter of BCP, whence PD⊥BC.
29.09.2022 16:26
By construction, DO=DF=DE. since OD and FE bisects each other, OEDF is a parallelogram ⇒∠DOF=90−∠OFE=90−∠FED=90−12∠DOF⇒∠DOF=60⇒∠EOF=120=∠BOC⇒∠EBF=60=∠PEC, and PE=PC⇒△PEC is equilateral ⇒∠OPF=30=OEF, so the quadrilateral PEOF is cyclic. Hence DE=DF=DP so D is the circumcenter of △PEF. Let L be the foot of P from EF. We know that ∠EPL=∠KPC, where K is PD∩BC. Is suffice to prove that ∠PEF=∠PCK. Note that ∠PEF=∠PEC+∠CEF=60+∠ECB=∠PCK, so we are done. ◼ [asy][asy] import graph; import math; import olympiad; import geometry; import cse5; size(8cm); void my_dot(pair A) {fill(circle(A, .01),black); } pair A = dir(90); pair B = dir(210); pair C = dir(330); pair O = circumcenter(A,B,C); pair D = dir(290); real r1 = circumradius(A,B,C); path c1 = circle(O, r1); path c2 = circle(D, r1); pair E = intersectionpoints(c1,c2)[1]; pair F = intersectionpoints(c1,c2)[0]; pair P = extension(B,F,C,E); pair L = foot(P,F,E); pair K = extension(P,D,B,C); draw(circumcircle(A,B,C)); draw(A--B--C--cycle, linewidth(1.2)); draw(B--P); draw(E--P); draw(O--F); draw(O--E); draw(F--E); draw(P--L); draw(P--K); my_dot(A); my_dot(B); my_dot(C); my_dot(O); my_dot(D); my_dot(E); my_dot(F); my_dot(P); my_dot(L); my_dot(K); label("A", A, NW); label("B", B, SW); label("C", C, dir(340)); label("O", O, NE); label("D", D, SE); label("E", F, dir(SW)); label("F", E, dir(E)); label("P", P, dir(340)); label("L", L, dir(245)); label("K", K, SE); [/asy][/asy]
29.09.2022 18:40
Notice that OEDF is a rhombus therefore ∠EDF=120∘ and ∠EAF=60∘. Hence BE=CF. Also notice that ∠PEF=60∘+∠CAF=60∘+∠BCE=∠AFESo AE∥PF. Similarly AF∥PE. Therefore AEPF is a parallelogram. Notice that ∠EBD+∠BEA=30∘+60∘=90∘⟹BD⊥PC. Similarly CD⊥PB. Hence D is the orthocenter of △PBC.
02.10.2022 20:09
This problem was proposed by me, Santiago Rodriguez from Colombia. I wrote it as a challenge, as I wanted to see if I could create a non-trivial problem about an equilateral triangle. This is what I came up with, I believe it is somewhat cute. My solutions are quite similar to the ones already posted so I won't post them unless I'm asked to. I hope that you enjoy my problem.
24.11.2022 19:10
I have attached a diagram for supporting my argument!
Attachments:

24.11.2022 19:50
lifeismathematics wrote:
I have attached a diagram for supporting my argument! beautiful!
10.03.2023 03:53
Es un Resultado conocido que las intersecciones de la mediatriz de un rádio con la circunferencia forman triangulos equilateros con los puntos que determinan el radio => ∆ABC~∆OFD~ODE Declaración: D es el ortocentro del triángulo BCP Demostración: Vamos por números complejos: La condición ∆ABC~OFD es equivalente a: a--b/c--b=f/d(¶) => si BD es perpendicular a CF => debe cumplirse: c--f/d-b + c--f(db)/d--b(cf)=0 <=> c--f/d--b • [(db/cf) +1]=0 Pero por (¶) sabemos que d/f=c--b/a--b Sustitúyendo llegamos a la conclusión de que si probamos que (c--b)b/(a--b)c=-1 concluimos abriendo y cancelando terminos semejantes obtenemos que es equivalente a probar que ac=b² lo cual es cierto ya q el ∆ ABC es equilátero => concluimos, de forma análoga probamos que CD es perpendicular a BP y en consecuencia que D es el ortocentro de ∆BCP => PD es perpendicular a BC.