Let $n$ be a positive integer with $d^2$ positive divisors. We fill a $d\times d$ board with these divisors. At a move, we can choose a row, and shift the divisor from the $i^{\text{th}}$ column to the $(i+1)^{\text{th}}$ column, for all $i=1,2,\ldots, d$ (indices reduced modulo $d$). A configuration of the $d\times d$ board is called feasible if there exists a column with elements $a_1,a_2,\ldots,a_d,$ in this order, such that $a_1\mid a_2\mid\ldots\mid a_d$ or $a_d\mid a_{d-1}\mid\ldots\mid a_1.$ Determine all values of $n$ for which ragardless of how we initially fill the board, we can reach a feasible configuration after a finite number of moves.