Let $ x$, $ y$, $ z$ be real numbers such that $ 0 < x,y,z < 1$ and $ xyz = (1 - x)(1 - y)(1 - z)$. Show that at least one of the numbers $ (1 - x)y,(1 - y)z,(1 - z)x$ is greater than or equal to $ \frac {1}{4}$
Problem
Source: JBMO 2009 Problem 3
Tags: symmetry, inequalities proposed, inequalities
27.06.2009 16:34
Suppose $ (1 - x)y < \frac {1}{4}$ and similarly , then $ \sum x - \sum xy < \frac {3}{4}$ But $ 2xyz = 1 - \sum x + \sum xy$ so $ xyz > \frac {1}{8}$ wich is false because $ x^2y^2z^2 = x(1 - x)y(1 - y)z(1 - z)\le (\frac {1}{4})^3 = \frac {1}{64}$
27.06.2009 19:15
I agree that Marius Mainea's solution is the most easy one, but here's another type of approach. It clear that we need to prove that $ xyz\le \dfrac{1}{8}$. $ xyz=(1-x)(1-y)(1-z)\iff \dfrac{x}{1-x}\cdot \dfrac{y}{1-y}\cdot \dfrac{z}{1-z}=1$. Suppose that $ a=\dfrac{x}{1-x}$, etc. We get that $ x=\dfrac{a}{a+1}$, $ y=\dfrac{b}{b+1}$,$ z=\dfrac{c}{c+1}$, with $ abc=1$. $ xyz\le \dfrac{1}{8}\iff 8abc\le (a+1)(b+1)(c+1)\iff 6\le \sum{a}+\sum{ab}$. But from AM-GM we get that: $ \sum{a}\ge 3$ and $ \sum{ab}\ge 3$, so the conclusion follows.
28.06.2009 01:23
since $ 0<x,y<1$ there exist positive reals $ a,b,c$ such that $ x=\dfrac{a}{a+b}, y=\dfrac{b}{b+c}$... this implies that $ z=\dfrac{c}{c+a}$... suppose wlog that $ a\geq b,c$, then, $ x(1-z)=\dfrac{a^2}{(a+b)(a+c)}\geq \dfrac{1}{4}$, and we're done
28.06.2009 10:36
My solution is little bit different and uglier but I think it's worth seeing. I'll check 3 cases: 1case: Only one of the numbers $ x,y,z$ is greater or equal to $ \frac {1}{2}$, say $ x$.Then both of the numbers $ (1 - y)x$ and $ (1 - z)x$ are greater than $ \frac {1}{4}$ 2case: Two of the numbers $ x,y,z$ are greater or equal to $ \frac {1}{2}$, say $ x$ and $ y$. Then both of the numbers $ (1 - z)x$ and $ (1 - z)y$ fulfil the needed conditions. Equality is hold iff $ x = y = \frac {1}{2}$ and whenever two of the numbers equal $ \frac {1}{2}$ 3case: When $ min(x,y,z)\ge\frac{1}{2}$. This could happen iff $ x = y = z = \frac {1}{2}$, otherwise $ xyz > (1 - x)(1 - y)(1 - z)$ which is impossible.Now all of the numbers equal $ \frac {1}{2}$ and so our proof is completed.
29.06.2009 17:26
It is enough to show that $ (1 - x)y + (1 - y)z + ( 1 - z)x\ge \frac {3}{4}$ From the condition we get that $ xyz = (1 - x)(1 - y)(1 - z)$ $ xyz = 1 - x - y - z + xy +yz +zx -xyz$ $ 1 - 2xyz = x + y + z - xy - yz - zx$ So, $ (1 - x)y + (1 - y)z + ( 1 - z)x = x + y + z - xy - yz - zx = 1 - 2xyz$ However, by using AM-GM $ 3 = (1 - x) + x + (1 - y) + y + (1 - z) + z\ge 6\sqrt [6] {x^2y^2z^2} = 6\sqrt [3] {xyz}$ $ \iff\ \frac {1}{2}\ge \sqrt [3] {xyz} \iff\ \frac {1}{8}\ge xyz \iff\ \frac {1}{4}\ge 2xyz \iff\ 1 - 2xyz\ge \frac {3}{4}$ Hence, the conclusion follows.
30.06.2009 10:49
broniran wrote: My solution is little bit different and uglier but I think it's worth seeing. In fact, pushing his method to more arduous analysis, one can prove that the restriction $ x, y, z \in (0,1)$ was irrelevant; it is enough to just take $ x, y, z \in \mathbb{R}$.
30.06.2009 18:50
bravos stefane Koga zaminuvate za Bremen?
30.06.2009 22:59
Фала! Изгледа во Среда ама не сум сигурен.
01.07.2009 08:40
StefanS wrote: Фала! Изгледа во Среда ама не сум сигурен. Не са ли излезнали резултатите вече?
01.07.2009 16:07
Резултатите се излезени ама не знам точно кога тргаме.
01.07.2009 18:12
Come on guys talk to each other through pm
26.05.2010 15:19
delegat wrote: Let $ x$, $ y$, $ z$ be real numbers such that $ 0 < x,y,z < 1$ and $ xyz = (1 - x)(1 - y)(1 - z)$. Show that at least one of the numbers $ (1 - x)y,(1 - y)z,(1 - z)x$ is greater than or equal to $ \frac {1}{4}$ Sorry for bringing this topic back, I'm posting my solution just for fun. Assume the contrary, i.e $(1-x)y, (1-y)z, (1-z)x$ are all less than $\frac{1}{4}$. That would imply $xyz <\frac{1}{8}$ and moreover, $x+y+z <\frac{3}{4} +xy+yz+zx$ Given condition gives $x+y+z=xy+yz+zx +1 -2xyz$, substituting $x+y+z <\frac{3}{4} +xy+yz+zx$ we have that $\frac{3}{4} >1 -2xyz$ or $xyz >\frac{1}{8}$. Contradiction !
26.05.2012 13:28
We suppose $x(1-y);y(1-z);z(1-x)<\dfrac{1}{4}$. By multiplying, $xyz(1-x)(1-y)(1-z)<\dfrac{1}{64}\Rightarrow xyz<\dfrac{1}{8}$. One of the numbers $x,y,z$ is $<\dfrac{1}{2}$. By symmetry, we suppose $x<\dfrac{1}{2}\Rightarrow 1-x>\dfrac{1}{2}$. But $y(1-x)<\dfrac{1}{4}\Rightarrow y<\dfrac{1}{2}\Rightarrow 1-y>\dfrac{1}{2}\Rightarrow z<\dfrac{1}{2}\Rightarrow 1-z>\dfrac{1}{2}$. In this case, $xyz<\dfrac{1}{8}<(1-x)(1-y)(1-z)$, false!
18.10.2015 11:30
is this legit ? sorry reviving WLOG $z =< y=< x$, then $x >= 1/2$ , because if $ x < 1/2 $ ,then $y,z < 1/2$ then $1-x > x , 1-y > y , 1-z > z$. So $(1-x)(1-y)(1-z) > xyz$ Also $ z <= 1/2 $ by similar reasons , then $1-z >= 1/2$ So, $x(1-z) >=1/2 * 1/2 = 1/4 $ we are done ??
21.10.2015 10:57
bummmmmp
19.04.2023 08:55
Marius Mainea wrote: Suppose $ (1 - x)y < \frac {1}{4}$ and similarly , then $ \sum x - \sum xy < \frac {3}{4}$ But $ 2xyz = 1 - \sum x + \sum xy$ so $ xyz > \frac {1}{8}$ wich is false because $ x^2y^2z^2 = x(1 - x)y(1 - y)z(1 - z)\le (\frac {1}{4})^3 = \frac {1}{64}$ Nice solution! The key here was to use proof by contradiction since at least one can imply that, also AM-GM gives $\sqrt{x(1-x)}\leq{(1-x+x)/2}=1/2$, or $x(1-x)\leq{1/4}$.
19.04.2023 11:00
https://artofproblemsolving.com/community/c6h494492p27431187 https://artofproblemsolving.com/community/c6h1064117p12520913 https://artofproblemsolving.com/community/c4h1579608p9740358 https://math.stackexchange.com/questions/2518051/if-abc-1-a1-b1-c-and-0-le-a-b-c-le-1-then-find-minimum-of-expressi?noredirect=1