Problem

Source: BMO Shortlist 2021

Tags: Balkan, shortlist, 2021, algebra, Functional inequality



Let $f, g$ be functions from the positive integers to the integers. Vlad the impala is jumping around the integer grid. His initial position is $x_0 = (0, 0)$, and for every $n \ge 1$, his jump is $x_n - x_{n - 1} = (\pm f(n), \pm g(n))$ or $(\pm g(n), \pm f(n)),$ with eight possibilities in total. Is it always possible that Vlad can choose his jumps to return to his initial location $(0, 0)$ infinitely many times when (a) $f, g$ are polynomials with integer coefficients? (b) $f, g$ are any pair of functions from the positive integers to the integers?