We apply barycentric coordinates with respect to $\triangle ABC$. Let $D=(p,q,r)$ [with $p+q+r=1$]; then
\[E=(p:0:r)=\left(\frac p{p+r},0,\frac r{p+r}\right), F=(p:q:0)=\left(\frac p{p+q},\frac q{p+q},0\right);\]Now we have
\[X=B+E-F=(p(q-r),p(p+r),r(p+q))\]and thus by symmetry
\[Y=C+F-E=(p(r-q):q(p+r):p(p+q)).\]It remains to find the ratio of $x,y$ coordinates of $T=\overline{EY}\cap\overline{FX}$; let $T=(f:g:h)$, so that
\[
\begin{vmatrix}f&g&h\\ p&0&r\\p(r-q)&q(p+r)&p(p+q)\end{vmatrix}
=0=
\begin{vmatrix}f&g&h\\ p&q&0\\p(q-r)&p(p+r)&r(p+q)\end{vmatrix},
\]which gives the system (after cancelling factors of $p+r$ and $p+q$ for the equations respectively)
\begin{align*}
qrf+p(p+q-r)g-pqh&=0;\\
qrf-prg+p(p+r-q)h&=0.
\end{align*}Subtracting these and rearranging gives
\[\frac g h=\frac{p+r}{p+q},\]which is equal to
\[\frac{b^2/c^2}{q/r}\]iff $AE/AF=c/b$: $AE=br/(p+r),AF=cq/(p+q)$.
But $BCEF$ cyclic iff $AE/AF=c/b$, so we're done!
Note: Cancellations of $p,p+q,p+r$ permissible because they're all strictly positive by the problem conditions.