In a cyclic convex hexagon ABCDEF, AB and DC intersect at G, AF and DE intersect at H. Let M,N be the circumcenters of BCG and EFH, respectively. Prove that the BE, CF and MN are concurrent.
Problem
Source: 2022 China TST, Test 1, P1 (posting for better LaTeX)
Tags: geometry, hexagon, concurrency
24.03.2022 12:46
24.03.2022 13:40
Here https://artofproblemsolving.com/community/u800085h2807853p24762198
15.04.2022 06:10
We Complex Bash Obviously the Circumcircle is the unit circle and the Complex Affix of each point is in lower-cases.
Similarly n=ef(d−a)ed−fa. We now find ˉm=a−dba−cd and ˉn=d−aed−fa Equation of ¯BE is w+ˉwbe−(b+e)=0 and Equation of ¯CF is w+ˉwcf−(c+f)=0 Equation of line ¯MN can be found by the determinant |wˉw1mˉm1nˉn1|=0which comes out as w(ef−da+ba−cd)+ˉw((cd−ba)ef+(da−ef)bc)+(bc(d−a)+ef(a−d))=0 Now the only thing we need to check is that |ef−da+ba−cd(cd−ba)ef+(da−ef)bcbc(d−a)+ef(a−d)1be−(b+e)1cf−(c+f)|=0 Which can be done in less than a dozen lines of algebra (I hope I haven't made any mistake in calculations )
15.04.2022 08:05
Let T=BE∩CF We use pascal in ABEDCF and we obtain G,T and H are collinear. Now observe, ∠MGT=∠BGM−∠BGT=90−∠BCG−∠ABT+∠ETH=90−∠TED−∠HFE+∠ETH=∠NHE−∠THD=∠NHT More over, HTTG.BGHE=sin∠TEDsin∠HTG.sin∠BTGsin∠ABT=sin∠BCGsin∠EFH⇒HTTG=sin∠BCGBG.HEsin∠EFH=HNGM Combining the angle relation and the ration of the lengths we get ΔNHT∼ΔMGT. That leads us to N,T and M being collinear.
14.05.2022 20:42
We can let X=¯BE∩¯CF∩¯GH by Pascal on ABEDCE. Notice ∠XHN=∠XHE−∠NHE=(∠BED−∠EXH)−(90−∠EFH)=(∠EBA−∠BXG)−(90−∠BCG)=∠XGB−∠MGB=∠XGM.Then by LoS on △CGX,△FHX and extended LoS on △BCG,△EFH, GXGM=2sin∠GBCsin∠GCDsin∠GCX=2sin∠XFHsin∠FEHsin∠HXF=HXHNas ∠CBG=∠AFC=180−∠EFH and ∠GCX=∠FED=180−∠FEH. Hence, △GMX∼△HNX. ◻
19.05.2022 00:28
Let T=BE∩CF. Consider the inversion Φ at T fixing the circle. Angle chase shows ∠BH∗C=180∘−∠BGC (where H∗=Φ(H)), i.e. H∈⊙(BCG). So Φ just swaps ⊙(EFH) and ⊙(BCG), implying points N,T,M are collinear. ◼ [asy][asy] size(200); pair A=dir(110),B=dir(50),C=dir(-20),D=dir(-60),E=dir(-140),F=dir(170),T=extension(F,C,E,B),G=extension(A,B,C,D),H=extension(A,F,E,D),N=circumcenter(F,H,E),M=circumcenter(G,B,C); draw(unitcircle); dot("A",A,dir(A)); dot("B",B,dir(B)); dot("C",C,dir(C)); dot("D",D,dir(D)); dot("E",E,dir(E)); dot("F",F,dir(F)); dot("G",G,dir(G)); dot("H",H,dir(H)); dot("T",T,dir(-90)); dot("M",M,dir(M)); dot("N",N,dir(N)); draw(A--G--D--H--A,red); draw(E--B^^F--C,blue); draw(N--F--E--N^^M--B--C--M,brown); draw(N--M,dotted); [/asy][/asy] Here's another different proof: Claim 1: ∠NFE+∠MBC=∠FTE. Proof: Here by ^XY we will mean angle subtended by minor arc XY on circumference. ∠FHE+∠BGC=∠AHD+∠AGD=180∘−(∠DAH+∠ADH)+180∘−(∠DAG+∠ADG)=180∘−(^DF+^EA)+180∘−(^DB+^AC)=360∘−(180∘+^FE+^BC)=180∘−(∠TBF+∠TFB)=180∘−∠FTESince ∠NFE=90∘−∠FHE and ∠MBC=90∘−∠BGC, so our Claim follows. ◻ Now we can basically ignore points A,D,H,G and only keep in mind that N,M lie on perpendicular bisectors of segments FE,BC (respectively) and our Claim 1 is satisfied. Let K=FN∩BM, X=OM∩FC, Y=ON∩BE and O be circumcenter of FBCE. Observe X,Y∈⊙(BOF) as ∠FYB=∠FOB=∠FXB=^FB[asy][asy] size(200); pair F=dir(110),B=dir(70),C=dir(0),E=dir(-150),O=(0,0),T=extension(E,B,C,F),N=1.2*(E+F),M=extension(O,1/2*(B+C),N,T),K=extension(N,F,M,B),X=extension(O,M,F,C),Y=extension(O,N,E,B); draw(unitcircle); dot("E",E,dir(E)); dot("F",F,dir(F)); dot("B",B,dir(B)); dot("C",C,dir(C)); dot("O",O,dir(-90)); dot("N",N,dir(N)); dot("M",M,dir(M)); dot("T",T,dir(T)); dot("K",K,dir(K)); dot("X",X,dir(-90)); dot("Y",Y,dir(-90)); draw(E--F--C--B--E^^F--Y^^B--X,red); draw(B--O--N--K--M--O--F,brown); draw(circumcircle(F,O,B),blue); draw(N--M,dotted); [/asy][/asy] Claim 2: K∈⊙(BOF). Proof: This is just angle chase combined with Claim 1, ∠FKB=∠NFT+∠MBT−∠FTB=(∠NFE+∠EFT)+(∠MBC+∠CBT)−∠FTB=(∠NFE+∠MBC)+(∠EFT+∠CBT)−∠FTB=∠ETF+2∠EFT−∠FTB=∠ETF+∠EFT−∠FET=180∘−2∠FET=180∘−∠FOBproving our Claim. ◻ By Pascal on FKBYOX w.r.t. ⊙(FOB), we obtain points N,T,M are collinear, as desired. ◼ Remark: Angle chase shows that this problem is equivalent to Polish Mathematical Olympiad finals 2021 P5
06.06.2022 16:54
Suppose that K=BE∩CF, and let BE and CF intersect (BCG) at E′ and F′. By Reim's theorem, we have GE′∥HE, GF′∥HF and E′F′∥EF, so K is the homothetic center of △GE′F′ and △HEF. Since M and N are their respective circumcenters, it follows that M, N, K are collinear.
08.07.2022 22:07
We will basicaly use Pascal's Theorem. Let A∗ and D∗ be the antipodals of A and D, respectively, and let P=BA∗∩D∗C and Q=D∗E∩FA∗. Then M and N are the midpoints of PG and QH, respectively. [asy][asy] import geometry; import graph; size(250); pair A,B,C,D,E,F,G,H, Ar,Dr,P,Q,M,N,R; A = dir(130); B=dir(73); C = dir(11.1); D = dir(-70); E=dir(-115.69); F = dir(179.97); G = extension(A,B,C,D); H = extension(A,F,D,E); Ar = -A; Dr = -D; Q = extension(F,Ar,E,Dr); P = extension(B,Ar,C,Dr); M= P*0.5+G*0.5; N=Q*0.5+H*0.5; R=extension(B,E,C,F); draw(unitcircle); draw(circumcircle(H,F,E),blue); draw(circumcircle(B,C,G),green); draw(A--H); draw(D--H); draw(A--G); draw(C--G); draw(H--Q, dotted+cyan); draw(G--P, dotted + cyan); draw(Q--P, dotted + red); draw(G--H, dotted + red); draw(E--Dr, dotted +magenta); draw(F--Ar, dotted +magenta); draw(B--Ar, dotted +magenta); draw(C--Dr,dotted +magenta); draw(B--E); draw(C--F); dot("R", R, dir(R)); dot("A", A, dir(A)); dot("B", B, dir(B)); dot("C", C, dir(-125)); dot("D", D, dir(D)); dot("E", E, dir(-70)); dot("F", F, dir(135)); dot("M", M, dir(135)); dot("N",N, dir(-80)); dot("A∗", Ar, dir(Ar)); dot("D∗", Dr, dir(Dr)); dot("P", P, dir(P)); dot("Q", Q, dir(Q)); dot("G", G, dir(G)); dot("H", H, dir(H)); [/asy][/asy] Now, let R=BE∩CF. Applying Pascal's Theorem at ABCDEF yelds that R,G and H are colinear. On the other hand, by applying Pascal's Theorem again at BA∗FCD∗E we get that P,R and Q are colinear. Hence, in order to show that M,R and N are colinear, it is sufficient(and necessary) to show that GM∥NH. That is just angle chasing; we have ∡(NH,ED)=π2+∡(HF,FE)=π2+∡AFEsimilarly, ∡(GM,AB)=π2−∡DCBHence ∡(NH,ED)+∡(GM,AB)∡AFE−∡DCB=∡(AB,DE)and indeed GM∥HN.◻
08.10.2022 12:03
Solution : Let X=BE∩CF By using Pascal's theorem in ABEDCF and we shall get G,X and H as collinear. Now observe that, ∠MGX=∠BGM−∠BGX=90−∠BCG−∠ABX+∠EXH=90−∠XED−∠HFE+∠EXH=∠NHE−∠XHD=∠NHX Again, HXXG.BGHE=sin∠XEDsin∠HXG.sin∠BXGsin∠ABX=sin∠BCGsin∠EFH⇒HXXG=sin∠BCGBG.HEsin∠EFH=HNGM Combining the angle relation and the ration of the lengths we get ΔNHX∼ΔMGX. That leads us to N,X and M being collinear. Therefore BE,CF and MN are concurrent.
28.12.2022 03:19
Let X=BE∩CF and let O be the center of the circle, so our goal is to show M,X,N collinear. We use moving points. Begin by keeping all points but A fixed, and extend all definitions to degenerate cases through continuity. As we slide A projectively on the circle, we define M to be the intersection of the perpendicular bisector of BC and of CG. Note that G varies projectively, so the perpendicular bisector of CG varies projectively in the pencil through ∞CD⊥, so M varies projectively on the perpendicular bisector of BC. A similar argument shows that N varies projectively on the perpendicular bisector of EF. Thus, XM and XN both vary projectively on the pencil through X, so it suffices to check the problem for three values of A. The problem is trivial when A=D, as M=N=O. Therefore, it suffices to solve it when A=C, as the case A=E will then follow by symmetry. Thus, we have entirely reduced to the case of A=C. The problem when A=C reads as follows. Let BCEF be a cyclic quadrilateral with center O, and let X=BE∩CF. Let D vary on the circle. Let M be the intersection of the perpendicular bisector of BC and the line through C perpendicular to CD. Let H=CF∩DE and let H be the intersection of the perpendicular bisectors of EF and FH. Show that X,M,N collinear. We solve this problem by varying D projectively. By the same logic as before, N varies projectively, and M varies projectively as the line through C perpendicular to CD varies projectively on the pencil through C. Thus, it suffices to check three values of D. As before, the case D=C is trivial, since M=N=O. When D=B, we see that M=∞BC⊥ and N is the circumcenter of XFE (as H=X), so the problem is true by the fact that XEF∼XCB and that the circumcenter and orthocenter are isogonal conjugates. When D=F, we see that N is the intersection of the line through F perpendicular to CF and the perpendicular bisector of EF, and M is the intersection of the line through C perpendicular to CF and the perpendicular bisector of BC. Thus, by the same similarity idea as above, the problem reduces to the following: Let XBC be a triangle, and let M be the intersection of the line through C perpendicular to XC and the perpendicular bisector of BC, and let N′ be defined similarly with B and C swapped. Show XM and XN′ are isogonal in ∠BXC. This follows by √bc inversion at X, since the circle through B and C tangent to XB gets mapped to the circle through B and C tangent to XC, so their corresponding circumcenters, i.e. M and N′, are isogonal, as desired.
22.01.2023 09:39
30.09.2023 22:40
I wasn't desperate enough to use inversion so I came up with this instead. Let ∡ denote directed angles modulo 180∘. We have ∡BGC+∡EHF=∡BAF+∡EDC=∡BCX+∡XBC=∡BXC.Since XBC∼XFE, we can compose a reflection over a line through X and a dilation at X such that the resulting transformation maps F to B and E to C. Suppose that this transformation maps N to N′. It suffices to show that ¯XM and ¯XN are isogonal with respect to ∠BXC. Observe the following lemma. Lemma: Let P and Q be points on the perpendicular bisector of △ABC. Then, P and Q are inverses with respect to the circumcircle of ABC if and only if ¯AP and ¯AQ are isogonal with respect to ∠BAC. Proof: Let O be the circumcenter of ABC. For the if direction, we will prove that ∡OPA=∡QAO, which suffices. Since the A-altitude and ¯AO are isogonal with respect to ABC, the directed angle between the A-altitude and ¯AP is equal to the directed angle between ¯AQ and ¯AO. Since ¯PQ is parallel to the A-altitude, we have ∡OPA=∡QAO, as desired. The converse is clear by uniqueness. ◻ If O is the circumcenter of BCX, we have ∡BMO=∡BGC=∡BXC+∡FHE=∡BOM+∡ON′B=∡OBN′,so M and N′ are inverses with respect to the circumcircle of BCX, as desired. ◻
03.12.2023 21:49
[asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(12cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -11.846109032258052, xmax = 15.708729054374183, ymin = -7.27546163156413, ymax = 6.765737157794893; /* image dimensions */ pen fuqqzz = rgb(0.9568627450980393,0,0.6); pen ffvvqq = rgb(1,0.3333333333333333,0); /* draw figures */ draw(circle((0.45269760075919907,-1.8833432923747244), 3.7801918556637735), linewidth(2)); draw(circle((0.45269760075919996,-1.8833432923747244), 3.7801918556637726), linewidth(0.4)); draw((xmin, -0.4614874235435215*xmin-5.131959835926818)--(xmax, -0.4614874235435215*xmax-5.131959835926818), linewidth(0.4)); /* line */ draw((xmin, 0.8516129032258101*xmin + 2.3321262456524723)--(xmax, 0.8516129032258101*xmax + 2.3321262456524723), linewidth(0.4)); /* line */ draw((xmin, -0.45745723368333807*xmin + 1.3680219871147685)--(xmax, -0.45745723368333807*xmax + 1.3680219871147685), linewidth(0.4)); /* line */ draw((xmin, 0.5740907879410247*xmin-6.218526721815619)--(xmax, 0.5740907879410247*xmax-6.218526721815619), linewidth(0.4)); /* line */ draw((-2.900396276482841,-0.13788864786840901)--(-2.774749537546841,-3.851447820865748), linewidth(0.4)); draw((3.9451313646220614,-0.43670689346261216)--(3.375447508457395,-4.280713402031743), linewidth(0.4)); draw(circle((-3.6958844426792545,-2.0237088502354235), 2.0467338024799657), linewidth(0.4)); draw(circle((5.03418858344353,-2.5623227488821447), 2.3883652130019946), linewidth(0.4) + fuqqzz); draw((-3.6958844426792545,-2.0237088502354235)--(5.03418858344353,-2.5623227488821447), linewidth(0.4)); draw((-2.900396276482841,-0.13788864786840901)--(3.375447508457395,-4.280713402031743), linewidth(0.4)); draw((-2.774749537546841,-3.851447820865748)--(3.9451313646220614,-0.43670689346261216), linewidth(0.4)); draw((-3.6958844426792545,-2.0237088502354235)--(0.45269760075919996,-1.8833432923747244), linewidth(0.4)); draw((0.45269760075919996,-1.8833432923747244)--(5.03418858344353,-2.5623227488821447), linewidth(0.4)); draw((-0.7364802170295132,1.7049301898595939)--(1.0492369130972348,-5.616169475638818), linewidth(0.4)); draw((xmin, 0.03929459568935406*xmin-2.2853532031665322)--(xmax, 0.03929459568935406*xmax-2.2853532031665322), linewidth(0.4)); /* line */ draw((-5.684322766062706,-2.5087163680267555)--(-3.6958844426792545,-2.0237088502354235), linewidth(0.4)); draw((5.03418858344353,-2.5623227488821447)--(7.354527903590921,-1.9963600027088542), linewidth(0.4)); draw(circle((2.694637471341226,1.5129057014699254), 5.8334830610106), linewidth(0.4) + ffvvqq); /* dots and labels */ dot((-0.7364802170295132,1.7049301898595939),dotstyle); label("A", (-0.6456152002838303,1.9162479805451729), NE * labelscalefactor); dot((-2.900396276482841,-0.13788864786840901),dotstyle); label("B", (-2.8167254177136165,0.06978975824507017), NE * labelscalefactor); dot((-2.774749537546841,-3.851447820865748),dotstyle); label("C", (-2.6949809195399834,-3.6434174360507408), NE * labelscalefactor); dot((1.0492369130972348,-5.616169475638818),dotstyle); label("D", (0.9370632759733968,-5.286968161394788), NE * labelscalefactor); dot((3.375447508457395,-4.280713402031743),dotstyle); label("E", (3.4531162382284757,-4.069523179658457), NE * labelscalefactor); dot((3.9451313646220614,-0.43670689346261216),dotstyle); label("F", (4.021257229705429,-0.23457148718901272), NE * labelscalefactor); dot((-5.684322766062706,-2.5087163680267555),linewidth(4pt) + dotstyle); label("G", (-5.596558126011566,-2.3448094555319874), NE * labelscalefactor); dot((7.354527903590921,-1.9963600027088542),linewidth(4pt) + dotstyle); label("H", (7.430103178567149,-1.837540713141849), NE * labelscalefactor); dot((-3.6958844426792545,-2.0237088502354235),linewidth(4pt) + dotstyle); label("M", (-3.60806465584223,-1.8578314628374546), NE * labelscalefactor); dot((5.03418858344353,-2.5623227488821447),linewidth(4pt) + dotstyle); label("N", (5.116957713268125,-2.4056817046188037), NE * labelscalefactor); dot((0.45269760075919996,-1.8833432923747244),linewidth(4pt) + dotstyle); label("O", (0.5312482820612873,-1.715796214968216), NE * labelscalefactor); dot((0.33291750702024897,-2.272271344330264),linewidth(4pt) + dotstyle); label("I", (0.12543328814917776,-2.4259724543144094), NE * labelscalefactor); dot((-1.6755196242868575,-2.3511920693724626),linewidth(4pt) + dotstyle); label("J", (-1.5992804359772876,-2.1824834579671433), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/asy] By Pascal, G−I−H Let J=(BGC)∩GH ∡BJH=∡BCD=∡BEH, so BJEH is cyclic Invert at I with radius √IA⋅ID the small circles swap and hence we are done.
03.12.2023 22:23
Having seen 2021 IMO 3 makes this really easy... (the idea is literally identical making it a 1 minute solve) Pascal's on AFCDEB means that X=BE∩CF is on GH. Define Y=(EFH)∩GH, now ∡FYG=∡FYH=∡FEH=∡FCD=∡FCGhence F,Y,C,G concyclic. The point is that there is a negative inversion at X with radius √XF⋅XC=√XB⋅XE=√XY⋅XGhence circles (FYE)=(EFH) and (BCG) are swapped, so the circumcenters are collinear with X. Done!
15.05.2024 06:41
Mimics a proof shared by math_comb01 for Pascals. Construct circumcircles of HEF and BCG. Then, let the former intersect CF and BE again at F′ and E′ respectively. By Reims, E′F′ and BC are parallel. Also, ∡F′E′H=∡F′FH=∡AFC=∡ABC=∡GBC, and similarly, ∡E′F′H=∡GCB, and so the two circles are homothetic, with homotethy centre BE∩CF, and we are done.