Problem

Source: 2016 Thailand October Camp 2.1

Tags: combinatorics, table, Coloring, Sets, number theory, algebra



1.1 Let $f(A)$ denote the difference between the maximum value and the minimum value of a set $A$. Find the sum of $f(A)$ as $A$ ranges over the subsets of $\{1, 2, \dots, n\}$. 1.2 All cells of an $8 × 8$ board are initially white. A move consists of flipping the color (white to black or vice versa) of cells in a $1\times 3$ or $3\times 1$ rectangle. Determine whether there is a finite sequence of moves resulting in the state where all $64$ cells are black. 1.3 Prove that for all positive integers $m$, there exists a positive integer $n$ such that the set $\{n, n + 1, n + 2, \dots , 3n\}$ contains exactly $m$ perfect squares.