Let $q=p^r$ for a prime number $p$ and positive integer $r$. Let $\zeta = e^{\frac{2\pi i}{q}}$. Find the least positive integer $n$ such that \[\sum_{\substack{1\leq k\leq q\\ \gcd(k,p)=1}} \frac{1}{(1-\zeta^k)^n}\]is not an integer. (The sum is over all $1\leq k\leq q$ with $p$ not dividing $k$.) Victor Wang
Problem
Source: TSTST 2021/9
Tags: USA TSTST, number theory, roots of unity, binomial coefficients
17.01.2022 20:02
help $ $ $ $
17.01.2022 20:04
I guessed that it was $p-1$, but I have no idea.
17.01.2022 20:05
I tried writing out the polynomial which has roots 1/(1-zeta^k) and then using Newton sums and vp’s, but couldn’t figure it out fully
17.01.2022 20:38
the answer is q*r*(p-1/p)-(q/p)+1
17.01.2022 20:58
Mop2018 wrote: the answer is q*r*(p-1/p)-(q/p)+1 Ahh yes this is so obvious, isn't it
17.01.2022 21:18
Mop2018 wrote: the answer is q*r*(p-1/p)-(q/p)+1 This is correct, and for the record it's been checked for $q = 2, 4, 8, 16, 32, 64, 128, 3, 9, 27, 81, 5, 25$ and is easily proven true for $r = 1$. Looking forward to seeing the solution . (Some might write it as $r(p^r-p^{r-1}) - (p^{r-1}-1)$)
17.01.2022 22:59
Good day sirs. This solution was communicated to me by the critics of the Moratorium On Solving Problems. Note that $\zeta^k$ for $k$ relatively prime to $p$ is a root to the polynomial $x^{(p-1)p^{r-1}}+x^{(p-2)p^{r-1}}+\cdots +1$. Also, note that if we let $y_k=\frac{1}{1-\zeta^k}$, then $\zeta^k=\frac{y_k-1}{y_k}$. Therefore, $y_k$ for $1\leq k\leq p^r$ relatively prime to $p$ form the set of roots of the polynomial $$pQ(y)=(y-1)^{(p-1)p^{r-1}}+(y-1)^{(p-2)p^{r-1}}y^{p^{r-1}}+\cdots+y^{(p-1)p^{r-1}}.$$ The magnitude of the coefficient of $y^{(p-1)p^{r-1}-i}$ is $${(p-1)p^{r-1}\choose i}+{(p-2)p^{r-1}\choose i}+\cdots+{p^{r-1}\choose i}+{0\choose i}.$$ We claim that these coefficients are all divisible by $p$ except for when $i=(p-1)p^{r-1}$. Note that if $v_p(i)<r-1$, this is true by Kummer's Theorem. When $v_p(i)=r-1$, we let $i=i'p^{r-1}$. Then, we use Lucas' Theorem to find $${(p-1)p^{r-1}\choose i}+{(p-2)p^{r-1}\choose i}+\cdots+{p^{r-1}\choose i}+{0\choose i}\equiv {p-1\choose i'}+{p-2\choose i'}+\cdots+{0\choose i'}\equiv {p\choose i'+1} (\text{mod } p).$$Note that ${p\choose i'+1}$ is not divisible by $p$ only when $i'=p-1$, or $i=(p-1)p^{r-1}$, so our claim is proven. Next, we claim that $v_p\left(i\left({(p-1)p^{r-1}\choose i}+{(p-2)p^{r-1}\choose i}+\cdots+{p^{r-1}\choose i}+{0\choose i}\right)\right)\geq r$ for $i\leq (p-2)p^{r-1}$ and $v_p\left(i\left({(p-1)p^{r-1}\choose i}+{(p-2)p^{r-1}\choose i}+\cdots+{p^{r-1}\choose i}+{0\choose i}\right)\right)=r-1$ otherwise. Note that $$i\left({(p-1)p^{r-1}\choose i}+{(p-2)p^{r-1}\choose i}+\cdots+{p^{r-1}\choose i}+{0\choose i}\right)=p^{r-1}\left((p-1){(p-1)p^{r-1}-1\choose i-1}+(p-2){(p-2)p^{r-1}-1\choose i-1}+\cdots\right).$$It remains to determine when $p$ divides $\left((p-1){(p-1)p^{r-1}-1\choose i-1}+(p-2){(p-2)p^{r-1}-1\choose i-1}+\cdots\right)$. We do this using Lucas' Theorem. Note that the last $r-1$ digits of $mp^{r-1}-1$ for $0\leq m\leq p-1$ are all $p-1$ base $p$. In otherwords, these last digits will not result in anything divisible by $p$, and is something held in common. We can divide out by this factor and let $i'$ be the $r$th place digit of $i-1$ to obtain $$(p-1){p-2\choose i'}+(p-2){p-3\choose i'}+\cdots=(i'+1)\left({p-1\choose i'+1}+{p-2\choose i'+1}+\cdots\right)=(i'+1){p\choose i'+2}.$$This is divisible by $p$ when $i'<p-2$, and otherwise not (provided $i$ is in the range $[1, (p-1)p^{r-1}]$. From here, we can see that our claim is true. Now, let $S_n$ denote the sum mentioned in the problem, and let $\sigma_i$ denote the elementary symmetric sums for the $y_k$. Then, $Q(y)=y^{(p-1)p^{r-1}}-\sigma_1y^{(p-1)p^{r-1}}+\sigma_2y^{(p-1)p^{r-1}-2}-\cdots$. We have proven that $\sigma_i$ is an integer for all $i$ except $i=(p-1)p^{r-1}$. We have set everything up for the perfect induction. The basic idea is that $S_n=\sigma_1S_{n-1}-\sigma_2S_{n-2}+\cdots+(-1)^{n-2}\sigma_{n-1}S_{1}+(-1)^{n-1}n\sigma_n$ by Newton Sums for $1\leq n\leq (p-1)p^{r-1}$. Furthermore, we have $S_n=\sigma_1S_{n-1}-\sigma_2S_{n-2}+\cdots+(-1)^{(p-1)p^{r-1}}\sigma_{(p-1)p^{r-1}}S_{n-(p-1)p^{r-1}}$ for larger $n$. The first equation sets up our "initial" conditions on $v_p(S_n)$ and the latter provides us with a way to extend them (emphasis on $\sigma_{(p-1)p^{r-1}}=\pm \frac{1}{p}$, which decreases the $v_p$). The details that finish this solution are left as an exercise for the reader.
18.01.2022 16:06
Solved with rama1728. Answer: $\boxed{n = rp^r - rp^{r-1} - p^{r-1} + 1}.$ The set of $\zeta^k$ are the roots of the polynomial $x^{(p-1)p^{r-1}}+x^{(p-2)p^{r-1}}+\cdots +1$. Note $a_k = \frac{1}{1-\zeta^k} \iff \zeta^k=\frac{a_k-1}{a_k}.$ So the $a_k$ are the roots to the monic polynomial $$P(x)=\frac{1}{p} \left( (x-1)^{(p-1)p^{r-1}}+(x-1)^{(p-2)p^{r-1}}x^{p^{r-1}}+\cdots+x^{(p-1)p^{r-1}} \right).$$We want to find the minimum $n$ where $v_p(S_n) < 0,$ where $S_n$ is the $n$th Newton sum. We can ignore any $q \ne p;$ the $v_q$ of all the coefficients of $P(x)$ is nonnegative. For any $1 \le i \le (p-1)p^{r-1},$ the $i$th symmetric sum, denoted $\sigma_i,$ is $$\frac{1}{p} \left({(p-1)p^{r-1}\choose i}+{(p-2)p^{r-1}\choose i}+\cdots+{0\choose i} \right)$$by Vieta's. If $v_p(i) < r-1$ then Lucas's Theorem implies each term in the inner sum $\equiv 0 \pmod{p},$ so then $v_p(\sigma_i) \ge 0.$ If $v_p = r-1$ then Lucas implies the inner sum is $\equiv 0 \pmod{p}$ iff $$0 \equiv {p-1\choose i_1}+{p-2 \choose i_1}+\cdots+{0\choose i_1} = \binom{p}{i_1+1} \pmod{p},$$where $i_1$ is the $p^{r-1}$ digit of $i.$ This occurs iff $i_1 \ne p-1.$ Thus, $v_p(\sigma_i) \ge 0$ iff $i \ne (p-1)p^{r-1},$ otherwise $v_p(\sigma_i) = -1.$ Also, \begin{align*} \sigma_i \times i &= \frac{1}{p} \left(i{(p-1)p^{r-1}\choose i}+i{(p-2)p^{r-1}\choose i}+\cdots+i{0\choose i} \right) \\ &= p^{r-2} \left((p-1){(p-1)p^{r-1}-1\choose i-1}+(p-2){(p-2)p^{r-1}-1\choose i-1}+\cdots \right). \\ \end{align*}Let $i_1$ be the $p^{r-1}$ digit of $i-1.$ By Lucas, the inner sum is $0 \pmod{p}$ iff $$0 \equiv (p-1){p-2\choose i_1}+(p-2){p-3\choose i_1}+ \cdots = (i_1+1) \left({p-1\choose i_1+1}+{p-2\choose i_1+1}+\cdots \right) = (i_1+1) \binom{p}{i_1+2} \pmod{p}.$$This is $0 \pmod{p} \iff i' \ne p-2 \iff i \le (p-2)p^{r-1}.$ So for $i\le (p-2)p^{r-1},$ then $v_p(\sigma_i \times i) \ge r-1$ and if $i >(p-2)p^{r-1}$ then $v_p(\sigma_i \times i) = r-2.$ Note $$S_n =\sigma_1 \times S_{n-1} - \sigma_{2} \times S_{n-2} + \dots - (-1)^n \times n \times \sigma_n.$$for $n \le (p-1)p^{r-1}.$ Note that all the $\sigma_i$ are integers except for $\sigma_{(p-1)p^{r-1}},$ which has $v_p$ of $-1.$ We verify by a quick induction that $v_p(S_n) \ge r-1$ for all $1 \le n \le (p-2)p^{r-1},$ since $v_p(n \times \sigma_n) \ge r-1.$ For $n = (p-2)p^{r-1}+1,$ all terms on the RHS have $v_p \ge r-1$ except for the last, which has $v_p$ of $r-2$ exactly since $v_p(n \times \sigma_n) = r-2.$ So $v_p(S_n) =r-2$ here. When $(p-2)p^{r-1}+1\le n \le (p-1)p^{r-1},$ we verify by a quick induction that all terms on the RHS have $v_p \ge r-2.$ So $v_p(S_n) \ge r-2$ here. We claim for all nonnegative integers $l,$ all $n$ in $[(p-2)p^{r-1}+1+l(p-1)p^{r-1}, (p-2)p^{r-1}+(l+1)(p-1)p^{r-1}]$ obey $v_p(S_n) \ge r-2-l,$ and in particular, if $n = (p-2)p^{r-1}+1+l(p-1)p^{r-1}$ then $v_p(S_n) = r-2-l$ exactly. We prove with induction, with base case already done. If it is true for $l-1$ where $l-1 \ge 0,$ take $n$ in $[(p-2)p^{r-1}+1+l(p-1)p^{r-1}, (p-2)p^{r-1}+(l+1)(p-1)p^{r-1}].$ So $n$ obeys the recurrence $$S_n =\sigma_1 \times S_{n-1} - \sigma_2 \times S_{n-2} + \dots - (-1)^{(p-1)p^{r-1}} \times \sigma_{(p-1)p^{r-1}} \times S_{n-(p-1)p^{r-1}}.$$We make the inductive step as follows: if $n =(p-2)p^{r-1}+1+l(p-1)p^{r-1}$ specifically, then all terms on the RHS have $v_p \ge r-1-l$ except for the last, which has $v_p$ of $r-2-l$ exactly (by the inductive hypothesis and the fact that $v_p(\sigma_{(p-1)p^{r-1}}) = -1$). So $v_p(S_n) = r-2-l$ here. For the other $n$ in the interval, we verify by a (separate) quick induction that all terms on the RHS have $v_p \ge r-2-l.$ So $v_p(S_n) \ge r-2-l$ here. Setting $l = r-1$ in $(p-2)p^{r-1}+1+l(p-1)p^{r-1},$ the desired $n$ simplifies to $rp^r - rp^{r-1} - p^{r-1} + 1.$ $\blacksquare$
18.01.2022 18:13
We can guess the smallest n like this: Let S(n) be the sum, it is easy to see that the smallest n is not less than p^(r-1)*(p-1), after using newton's sum, we might guess that vp(S(n))=vp(S(n-p^(r-1)*(p-1)))-1=vp(S(n-2*p^(r-1)*(p-1)))-2=..., therefore we look at the vp's of S(0),S(1),...,S(p^(r-1)*(p-1)-1), and assume the smallest value of the vp's is j, let i be the smallest integer such that vp(S(i))=j, then the answer will be i+(j+1)(p^(r-1)*(p-1)). Using newton's sum again and trying several cases, we conclude that j=r-2 when r>=2 and finally, prove that our guesses are right. This is a very nice and hard NT problem.
23.01.2022 17:21
This problem was proposed by Victor Wang. I'll show the author's solution for this problem since it has nice number theoretic ideas that aren't covered by the other solutions. Let $S_q$ denote the set of primitive $q$th roots of unity (thus, the sum in question is a sum over $S_q$). Let $\zeta_p=e^{2\pi i/p}$ be a fixed primitive $p$th root of unity. Observe that the given sum is an integer for all $n\leq 0$ (e.g. because the sum is an integer symmetric polynomial in the primitive $q$th roots of unity). By expanding polynomials in the basis $(1-x)^{k}$, it follows that if the sum in the problem statement is an integer for all $n < n_0$, then \[\sum_{\omega\in S_q} \frac{f(\omega)}{(1-\omega)^{n}}\in \mathbb{Z}\]for all $n < n_0$ and $f\in \mathbb{Z}[x]$, whereas for $n=n_0$ there is some $f\in \mathbb{Z}[x]$ for which the sum is not an integer (e.g. $f=1$). Let $z_q=r\phi(q)-q/p=p^{r-1}[r(p-1)-1]$. We claim that the answer is $n = z_q+1$. We prove this by induction on $r$. First is the base case $r=1$. Lemma. There exist polynomials $u,v\in \mathbb{Z}[x]$ such that $(1-\omega)^{p-1}/p = u(\omega)$ and $p/(1-\omega)^{p-1} = v(\omega)$ for all $\omega\in S_p$. (What we are saying is that $p$ is $(1-\omega)^{p-1}$ times a unit (invertible algebraic integer), namely $v(\omega)$.) Proof. Note that $p = (1-\omega)\cdots(1-\omega^{p-1})$. Thus we can write \begin{align*} \frac{p}{(1-\omega)^{p-1}} &= \frac{1-\omega}{1-\omega} \cdot\frac{1-\omega^2}{1-\omega} \dotsm \frac{1-\omega^{p-1}}{1-\omega} \end{align*}and take \[v(x)=\prod_{k=1}^{p-1}\frac{1-x^{k}}{1-x}.\]Similarly, the polynomial $u$ is \[u(x) = \prod_{k=1}^{p-1}\frac{1-x^{k\ell_k}}{1-x^k}\]where $\ell_k$ is a multiplicative inverse of $k$ modulo $p$. Now, the main idea: given $g\in \mathbb{Z}[x]$, observe that \[S = \sum_{\omega \in S_p} (1-\omega)g(\omega)\]is divisible by $1-\zeta_p^k$ (i.e. it is $1-\zeta_p^k$ times an algebraic integer) for every $k$ coprime to $p$. By symmetric sums, $S$ is an integer; since $S^{p-1}$ is divisible by $(1-\zeta_p)\cdots(1-\zeta_p^{p-1}) = p$, the integer $S$ must itself be divisible by $p$. (Alternatively, since $h(x) := (1-x)g(x)$ vanishes at $x=1$, one can interpret $S$ using a roots of unity filter: $S = p\cdot h([x^0] + [x^p] + \dotsb) \equiv 0\pmod{p}$.) Now write \[ \mathbb{Z} \ni \frac{S}{p} = \sum_{\omega \in S_p} \frac{(1-\omega)^{p-1}}{p} \frac{g(\omega)}{(1-\omega)^{p-2}} = \sum_{\omega \in S_p} u(\omega)\frac{g(\omega)}{(1-\omega)^{p-2}}. \]Taking $g = v\cdot (1-x)^k$ for $k\geq 0$, we see that the sum in the problem statement is an integer for any $n\leq p-2$. Finally, we have \[\sum_{\omega\in S_p}\frac{u(\omega)}{(1-\omega)^{p-1}}=\sum_{\omega\in S_p}\frac{1}{p}=\frac{p-1}{p}\notin\mathbb{Z},\]so the sum is not an integer for $n=p-1$. Now let $r\ge2$ and assume the induction hypothesis for $r-1$. Lemma. There exist polynomials $U,V\in \mathbb{Z}[x]$ such that $(1-\omega)^p/(1-\omega^p) = U(\omega)$ and $(1-\omega^p)/(1-\omega)^p = V(\omega)$ for all $\omega\in S_q$. (Again, these are units.) Proof. Similarly to the previous lemma, we write $1-\omega^p = (1-\omega\zeta_p^0)\cdots(1-\omega\zeta_p^{p-1})$. The polynomials $U$ and $V$ are \begin{align*} U(x) &= \prod_{k=1}^{p-1}\frac{1-x^{(kq/p+1)\ell_k}}{1-x^{kq/p+1}} \\ V(x) &= \prod_{k=1}^{p-1}\frac{1-x^{kq/p+1}}{1-x} \end{align*}where $\ell_k$ is a multiplicative inverse of $kq/p+1$ modulo $q$. Corollary. If $\omega\in S_q$, then $(1-\omega)^{\phi(q)}/p$ is a unit. Proof. Induct on $r$. For $r=1$, this is the first lemma. For the inductive step, we are given that $(1-\omega^p)^{\phi(q/p)}/p$ is a unit. By the second lemma, $(1-\omega)^{\phi(q)}/(1-\omega^p)^{\phi(q/p)}$ is also a unit. Multiplying these together yields another unit. Thus we have polynomials $A, B\in \mathbb{Z}[x]$ such that \begin{align*} A(\omega) &= \frac{p}{(1-\omega)^{\phi(q)}}V(\omega)^{z_{q/p}} \\ B(\omega) &= \frac{(1-\omega)^{\phi(q)}}{p}U(\omega)^{z_{q/p}} \end{align*}for all $\omega\in S_q$. Given $g\in \mathbb{Z}[x]$, consider the $p$th roots of unity filter \[S(x) := \sum_{k=0}^{p-1} g(\zeta_p^k x) = p\cdot h(x^p),\]where $h\in \mathbb{Z}[x]$. Then \[ph(\eta) = S(\omega) = \sum_{\omega^p = \eta} g(\omega)\]for all $\eta\in S_{q/p}$, so \begin{align*} \frac{h(\eta)}{(1-\eta)^{z_{q/p}}} = \frac{S(\omega)}{p(1-\eta)^{z_{q/p}}} &= \sum_{\omega^p = \eta} \frac{(1-\omega)^{pz_{q/p}}}{(1-\omega^p)^{z_{q/p}}} \frac{g(\omega)}{p(1-\omega)^{pz_{q/p}}} \\ &= \sum_{\omega^p = \eta} U(\omega)^{z_{q/p}}\frac{(1-\omega)^{\phi(q)}}{p}\frac{g(\omega)}{(1-\omega)^{z_q}}. \end{align*}(Implicit in the last line is $z_q=\phi(q)+pz_{q/p}$.) Since $U(\omega)$ and $(1-\omega)^{\phi(q)}/p$ are units, we can let $g=A\cdot f$ for arbitrary $f\in \mathbb{Z}[x]$, so that the expression in the summation simplifies to $f(\omega)/(1-\omega)^{z_q}$. From this we conclude that for any $f\in \mathbb{Z}[x]$, there exists $h\in \mathbb{Z}[x]$ such that \begin{align*} \sum_{\omega\in S_q}\frac{f(\omega)}{(1-\omega)^{z_q}} &= \sum_{\eta\in S_{q/p}}\sum_{\omega^p=\eta}\frac{f(\omega)}{(1-\omega)^{z_q}} \\ &= \sum_{\eta\in S_{q/p}}\frac{h(\eta)}{(1-\eta)^{z_{q/p}}}. \end{align*}By the inductive hypothesis, this is always an integer. In the other direction, for $\eta\in S_{q/p}$ we have \begin{align*} \sum_{\omega^p = \eta} \frac{B(\omega)}{(1-\omega)^{1+z_q}} &= \sum_{\omega^p=\eta}\frac{1}{p(1-\omega^p)^{z_{q/p}}(1-\omega)} \\ & = \frac{1}{p(1-\eta)^{z_{q/p}}}\sum_{\omega^p = \eta} \frac{1}{1-\omega} \\ & = \frac{1}{p(1-\eta)^{z_{q/p}}}\left[\frac{px^{p-1}}{x^p - \eta}\right]_{x=1} \\ & = \frac{1}{(1-\eta)^{1 + z_{q/p}}}. \end{align*}Summing over all $\eta\in S_{q/p}$, we conclude by the inductive hypothesis that \[\sum_{\omega\in S_q}\frac{B(\omega)}{(1-\omega)^{1+z_q}}=\sum_{\eta\in S_{q/p}}\frac{1}{(1-\eta)^{1+z_{q/p}}}\]is not an integer. This completes the solution.
19.06.2022 06:09
New to LaTeX on aops. The minimum $n$ is $1 + p^{r-1}((p-1)r-1)$. For brevity let $d = (p-1)p^{r-1}$. The polynomial with roots $\zeta_k$ with $\gcd(k,p)=1$ is $$\Phi_{q}(x) = \frac{x^{p^r}-1}{x^{p^{r-1}} - 1} = 1 + x^{p^{r-1}} + x^{2p^{r-1}} + \cdots + x^{(p-1)p^{r-1}}.$$Then define $$Q(x) = x^{q}\Phi_{q}\left(1-\frac{1}{x}\right) = (x-1)^{(p-1)p^{r-1}} + x^{p^{r-1}}(x-1)^{(p-2)p^{r-1}} + \cdots + x^{(p-1)p^{r-1}},$$which has the $d$ roots $\frac{1}{1-\zeta_k}$. The problem deals with $Q$'s power sums, which we call $S_n$. Rearranging $Q(x)$, we can isolate the $x^d$ term on one side:\begin{align*} x^{d} &= \frac{px^d-Q(x)}{p} = -\frac{1}{p} + c_1x + c_2x^2 + c_3x^3 + \ldots + c_{d-1}x^{d-1}. \end{align*}By Newton's recurrences on power sums, this implies $$S_n = -\frac{1}{p}S_{n-d} + c_1S_{n-d+1} + c_2S_{n-d+2} + \cdots + c_{d-1}S_{n-1}.$$ Claim -- The $c_1,c_2,\ldots,c_{d-1}$ are integers. Proof: The $x^{d-k}$th coefficient of $Q(x)$ is \begin{align*} &(-1)^{k}\left( \binom{(p-1)p^{r-1}}{k} + \binom{(p-2)p^{r-1}}{k} + \cdots + \binom{0}{k} \right) \end{align*}which by Lucas theorem is a multiple of $p$ if $k\neq 0\pmod{p^{r-1}}$. Otherwise, $k = p^{r-1}k'$ for a $k' < p-1$, by Lucas again, becomes \begin{align*} \binom{p-1}{k'} + \binom{p-2}{k'} + \cdots + \binom{k'}{k'} \equiv \binom{p}{k'+1} \equiv 0 \pmod{p}. \end{align*}by the hockey stick identity. When we divide $Q(x)$ by $p$, the $c_1,\ldots,c_{d-1}$ are integers. $\hfill\clubsuit$ Now we have a tool to generate power sums, provided we already have $d$ terms. Since the only term of the Newton's recurrence that is noninteger is the last, $\frac{1}{p}$, $p$ is the only prime for which $v_p$ of $S_n$ may go negative. To this end, we compute $v_p(S)$ Claim -- (Calculation on negative $n$) The $n\in\{-d+1, \ldots, -p^{r-1}\}$, have the property that $v_p(S_n) \geqslant r$, and the $n\in\{-p^{r-1}+1, \ldots, 0\}$, have the property that $v_p(S_n) = r-1$. Proof: Expand $(1-\zeta_k)^{-n}$ by the binomial theorem and group terms raised to the same power. On each exponent $e$, the coefficient is \begin{align*} (-1)^e\binom{n}{e}\times\begin{cases} d & \text{if } v_p(e) = r, \text{ equivalent to } n=0 \\ -\frac{d}{p-1} & \text{if } v_p(e) = r-1 \\ 0 & \text{ otherwise} \end{cases} \end{align*}The first two cases are equivalent modulo $p^r$, hence view them as one. Fix $n$ to the range $ap^{r-1}$ to $(a+1)p^{r-1}-1$. By the Lucas theorem, $\binom{n}{bp^{r-1}} \equiv \binom{a}{b}\pmod{p}$, so $$S_n \equiv (p-1)p^{r-1}\left(\binom{a}{0} - \binom{a}{1} + \binom{a}{2} - \cdots \pm \binom{a}{a} \right) \pmod{p^r}$$The alternating sum of binomial coefficients is usually $0$, but it is $1$ when $a=0$. $\hfill\clubsuit$ Claim -- When $n=dt-p^{r-1}+1$, we have $v_p(S_n) = r-1-t$, the minimum over all smaller $-d<n'<n$. Proof: More or less induction, $t=0$ proved by the previous claim. Only the last term of our recurrence allows us to decrease $v_p(S_n)$. Thus we have $v_p(S_n) \geqslant v_p(S_{n-d}) - 1$ which proves that the next possible smallest value is the $n+d$. This indeed lowers the $v_p$ by $1$, since the sum contains only one term of minimal $v_p$. $\hfill\clubsuit$ So the first non-integer sum occurs when $v_p = -1$, which is $t = r$. It follows that $n=1 + p^{r-1}((p-1)r-1)$, done.
26.12.2023 20:24
The answer is $\boxed{n=(p-2)p^{r-1}+1+(r-1)(p-1)p^{r-1}}$. Since the $\zeta^k$ are roots of the $q$-th cyclotomic polynomial $\Phi_{p^r}(x)=x^{(p-1)p^{r-1}}+x^{(p-2)p^{r-1}}+\cdots+x^{p^{r-1}}+1$, by polynomial transformations the $\tfrac{1}{1-\zeta^k}$ are the roots of $$x^{(p-1)p^{r-1}}\Phi_{p^r}\left(1-\frac{1}{x}\right)=\sum_{i=0}^{(p-1)p^{r-1}} \left(\sum_{j=0}^{p-1} \binom{jp^{r-1}}{i}\right)(-1)^ix^{(p-1)p^{r-1}-i}.$$Note that the $x^{(p-1)p^{r-1}}$ coefficient is $p$. For $1 \leq k \leq (p-1)p^{r-1}$, define $$T_k=\sum_{i=1}^{p-1} \binom{ip^{r-1}}{k},$$so the $k$-th symmetric sum of the $\tfrac{1}{1-\zeta^k}$ is $\tfrac{1}{p}T_k$. We now introduce the following key claim. Claim: We have $p^{r-1} \mid kT_k$ for all $k$. Moreover, $\nu_p(kT_k)=r-1$ is equivalent to $k \geq (p-2)p^{r-1}+1$. Proof: We write $$kT_k=\sum_{i=1}^{p-1} k\binom{ip^{r-1}}{k}=p^{r-1}\sum_{i=1}^{p-1} i\binom{ip^{r-1}-1}{k-1}.$$This immediately establishes $p^{r-1} \mid kT_k$. Then, $\nu_p(kT_k)> r-1$ is equivalent to $$p \mid \sum_{i=1}^{p-1} i\binom{ip^{r-1}-1}{k-1}.$$Let $d_j$ be the digit in the $p^j$ place of $k-1$ when it is written in base $p$. By Lucas' theorem, we have $$\sum_{i=1}^{p-1} i\binom{ip^{r-1}-1}{k-1}\equiv \sum_{i=1}^{p-1}i\binom{i-1}{d_{r-1}}\prod_{j=0}^{r-2} \binom{p-1}{d_j} \equiv \left(\prod_{j=0}^{r-2} \binom{p-1}{d_j}\right)\left((d_{r-1}+1)\sum_{i=1}^{p-1} \binom{i}{d_{r-1}+1}\right) \pmod{p}.$$Since no $\tbinom{p-1}{d_j}$ is divisible by $p$, the condition is thus equivalent to $$(d_{r-1}+1)\sum_{i=1}^{p-1} \binom{i}{d_{r-1}+1}=(d_{r-1}+1)\binom{p}{d_{r-1}+2} \equiv 0 \pmod{p},$$where the equality is by the hockey-stick identity. If $d_{r-1}<p-2$ then $p \mid \tbinom{p}{d_{r-1}+2} \implies \nu_p(kT_k)>r-1$. On the other hand, if $d_{r-1}=p-2$ then the above quantity is nonzero modulo $p$ and hence $\nu_p(kT_k)=r-1$. Note that $d_{r-1} \leq p-2$, since $k \leq (p-1)p^{r-1}$ so the $p^{r-1}$ place of $k-1$ is at most $p-2$. $\blacksquare$ Important corollary: From the above claim, we find that $p \mid T_k$ if $k \leq (p-2)p^{r-1}$ since $\nu_p(k) \leq r-1$ but $\nu_p(kT_k) \geq r$. Additionally, $p \mid T_k$ if $(p-2)p^{r-1}+1 \leq k \leq (p-1)p^{r-1}-1$, since $\nu_p(k) \leq r-2$ but $\nu_p(kT_k)=r-1$. But when $k=(p-1)p^{r-1}$, we have $\nu_p(k)=\nu_p(kT_k)=r-1$. In conclusion, $p \mid T_k$ for all $k$ except $k=(p-1)p^{r-1}$. We are interested in the power sums of the $\tfrac{1}{1-\zeta^k}$. To that end, we will employ Newton's Identities in the following form. Fact: Let $S_i$ denote the $i$-th power sum of the $\tfrac{1}{1-\zeta^k}$ (the sum of their $i$-th powers) for $i \geq 1$. Then for $i \leq (p-1)p^{r-1}$ we have $$S_i=\left(\sum_{j=1}^{i-1}\frac{(-1)^{j+1}}{p}T_jS_{i-j}\right)+\frac{(-1)^{j+1}}{p}iT_i,$$and for $i>(p-1)p^{r-1}$ we have $$S_i=\sum_{j=1}^k \frac{1}{(-1)^{j+1}}\sigma_jS_{i-j}.$$ From the above, the only prime $q$ where we could ever have $\nu_q(S_i)<0$ is $q=p$, since we only ever divide by $p$. Hence it suffices to find the least $n$ where $\nu_p(S_n)<0$. According to our claim and corollary, straightforward induction implies that for $1 \leq i \leq (p-2)p^{r-1}$, $S_i$ will be divisible by $p^{r-1}$, but we will have $\nu_p(S_{(p-2)p^{r-1}+1})=r-2$. Then induction again implies that for $(p-2)p^{r-1} \leq i \leq (p-1)p^{r-1}$, $S_i$ will be divisible by $p^{r-2}$. For brevity, let $t=(p-1)p^{r-1}$. Fix some $i>t$; by our corollary, if $p^\ell \mid S_{i-j}$ for $1 \leq j \leq t-1$ and $p^{\ell+1} \mid S_{i-t}$, then $p^\ell \mid S_i$. However, if $p^\ell \mid S_{i-j}$ for $1 \leq j \leq t-1$ and $\nu_p(S_{i-t}) \leq \ell$, then $\nu_p(S_i)=\nu_p(S_{i-t})-1$. Applying this fact, it follows that $p^{r-2}$ divides $S_i$ for $(p-2)p^{r-1}+1+{\color{red}0(p-1)p^{r-1}} \leq i \leq (p-2)p^{r-1}+{\color{red}1(p-1)p^{r-1}}$, $\nu_p(S_i)={\color{blue}r-3}$ when $i=(p-2)p^{r-1}+1+{\color{red}1(p-1)p^{r-1}}$, since we know ${\color{blue}p^{r-2}} \mid S_{i-j}$ for $1 \leq j \leq (p-1)p^{r-1}-1$, but $\nu_p(S_{i-(p-1)p^{r-1}})={\color{blue}r-2}$. $p^{r-3}$ divides $S_i$ for $(p-2)p^{r-1}+1+{\color{red}1(p-1)p^{r-1}} \leq i \leq (p-2)p^{r-1}+{\color{red}2(p-1)p^{r-1}}$, $\nu_p(S_i)={\color{blue}r-4}$ when $i=(p-2)p^{r-1}+1+{\color{red}2(p-1)p^{r-1}}$, since we know ${\color{blue}p^{r-3}} \mid S_{i-j}$ for $1 \leq j \leq (p-1)p^{r-1}-1$, but $\nu_p(S_{i-(p-1)p^{r-1}})={\color{blue}r-3}$. $p^{r-4}$ divides $S_i$ for $(p-2)p^{r-1}+1+{\color{red}2(p-1)p^{r-1}} \leq i \leq (p-2)p^{r-1}+{\color{red}3(p-1)p^{r-1}}$, $\nu_p(S_i)={\color{blue}r-5}$ when $i=(p-2)p^{r-1}+1+{\color{red}3(p-1)p^{r-1}}$, since we know ${\color{blue}p^{r-4}} \mid S_{i-j}$ for $1 \leq j \leq (p-1)p^{r-1}-1$, but $\nu_p(S_{i-(p-1)p^{r-1}})={\color{blue}r-4}$... and so on. Thus the least $i$ with $\nu_p(S_i)\leq t$ is $(p-2)p^{r-1}+1+(r-t-2)(p-1)p^{r-1}$. Plugging in $t=-1$ yields the advertised answer. $\blacksquare$
15.05.2024 06:03
Combo The answer is $p^{r-1}(p-2)+1+p^{r-1}(p-1)(r-1)$. The numbers $\frac{1}{1-\zeta^k}$ are roots of $\sum_{j=0}^{p-1}\left(\frac{x-1}{x}\right)^{p^{r-1}\cdot j}$, so they are roots of $\sum_{j=0}^{p-1}(x-1)^{p^{r-1}\cdot j}x^{p^{r-1}(p-1-j)}$. The leading coefficient is $p$ and the ending coefficient is $\pm 1$. The $x^{p^r(p-1)-n}$ coefficient is $\pm \sum_{k=0}^{p-1} \binom{p^{r-1}\cdot k}{n}$, we can show that the $\nu_p$ of this is at least $r-\nu_p(n)$ if $n\le p^r(p-2)$ and is exactly $r-1-\nu_p(n)$ if $n=p^r(p-2)+1$. $\binom{p^{r-1}\cdot k}{n}$ is the number of ways to choose $n$ items out of $p^{r-1}\cdot k$ items, and we can arrange the $p^{r-1}\cdot k$ items in $k$ circles of $p^{r-1}$ items. Then for each way to choose $n$ items, group it with the configurations where each of the circles is rotated in some way (not necessarily all the same way, or rotated at all). There must be a circle with $x$ items selected where $\nu_p(x)\le \nu_p(n)$, so in each group there is a multiple of $p^{r-1-\nu_p(n)}$ configurations by rotating that circle. The amount of groups which don't have a multiple of $p^{r-\nu_p(n)}$ configurations are those with $1$ group that has $n\bmod p^{r-1}$ items, where the items chosen are periodic $\bmod p^{r-1-\nu_p(n)}$, and all other groups having either $0$ or $p^{r-1}$ elements chosen. Thus $\binom{p^{r-1}\cdot k}{n}\equiv \binom{k}{\lfloor n/p^{r-1}\rfloor}\cdot (k-\lfloor n/p^{r-1}\rfloor-1)\cdot \binom{p^{r-1}/p^{\nu_p(n)}}{(n\bmod p^{r-1})/p^{\nu_p(n)}}\bmod p^{r-\nu_p(n)}$ if $p^{r-1}\nmid n$ and $\binom{p^{r-1}\cdot k}{n}\equiv \binom{k}{n/p^{r-1}}\mod p$ if $p^{r-1}\mid n$. Suppose $p^{r-1}\nmid n$. $\binom{p^{r-1}/p^{\nu_p(n)}}{(n\bmod p^{r-1})/p^{\nu_p(n)}}\equiv 0\bmod p^{r-1-\nu_p(n)}$ by Kummer's theorem or repeating the above argument again, so if $j=\lfloor n/p^{r-1}\rfloor$, we can show $\sum_{k=0}^{p-1}\binom{k}{j}(k-j-1)$ is $0\bmod p$ for $j<p-2$ and not $0\bmod p$ for $j=p-2$. For $j=0$, the result is clear. For $j>0$, $\sum_{k=0}^{p-1}\binom{k}{j}(k-j-1)=(j+1)\sum_{k=0}^{p-1}\binom{k+1}{j+1}-(j+2)\sum_{k=0}^{p-1}\binom{k}{j}$=$(j+1)\binom{p+1}{j+2}-(j+2)\binom{p}{j+1}\equiv (j+1)\binom{p+1}{j+2}\bmod p$, this is not $0\bmod p$ only when $j=p-2$. If $p^{r-1}\mid n$, $\sum_{k=0}^{p-1}\binom{k}{n/p^{r-1}}=\binom{p}{n/p^{r-1}+1}\equiv 0\bmod p$ if $n\le p^{r-1}(p-2)$. Let $e_n$ and $p_n$ be the $n$-th symmetric power and sum of $n$-th powers of the roots respectively. $e_n$ is the $x^{p^{r-1}(p-1)-n}$ coefficient times $\frac{1}{p}$ or $-\frac{1}{p}$. Then by induction, we can show $p^{r-1}\mid p_n$ for $n\le p^{r-1}(p-2)$ and $p^{r-2}\mid p_n$ for $p^{r-1}(p-2)<n\le p^{r-1}(p-1)$, with $\nu_p(p_{n})=r-2$ for $n=p^{r-1}(p-2)+1$. This fact is true for $n=1$. For $n\le p^{r-1}(p-2)$, $ne_n$ and $p_1,\dots ,p_{n-1}$ are all divisible by $p^{r-1}$, so by Newton's sums $p_n$ is divisible by $p^{r-1}$. For $n=p^{r-1}(p-2)+1$, $p_1,\dots ,p_{n-1}$ are all divisible by $p^{r-1}$ but $\nu_p(ne_n)=r-2$, so $\nu_p(p_n)=r-2$. For $n>p^{r-1}(p-2)+1$, $ne_n, p_1,\dots ,p_{n-1}$ are all divisible by $p^{r-2}$, so $p^{r-2}\mid p_n$. For $r>1$, $p_n$ is an integer for all $n\le p^{r-1}(p-1)$ since all the summands in the Newton sums are integers, because the only $e_i$ that is not an integer is $e_{p^{r-1}(p-1)}=\frac{1}{p}$, but the only summand it is in is $p^{r-1}(p-1)e_i$. For $r=1$, $p_{p-1}$ is not an integer because $\nu_p(p_{p-1})=-1$ and for $n<p-1$, $p_n$ is an integer. For $n>p^{r-1}(p-1)$, $p_n=e_1p_{n-1}-e_2p_{n-2}+\cdots \pm \frac{1}{p}p_{n-p^{r-1}(p-1)}$. Thus $p_n$ not being an integer is equivalent to $\nu_p(p_n)<0$. Thus for $p^{r-1}(p-1)<n\le p^{r-1}(p-1)+p^{r-1}(p-2)$, $\nu_p(p_n)\ge r-2$, and $\nu_p(p_n)=r-3$ for $n=p^{r-1}(p-1)+p^{r-1}(p-2)+1$. By induction, we can show $\nu_p(p_n)\ge r-k-1$ for $kp^{r-1}(p-1)+p^{r-1}(p-2)$ and $\nu_p(p_n)=r-k-2$ for $n=kp^{r-1}(p-1)+p^{r-1}(p-2)+1$. Thus the answer is $p^{r-1}(p-1)(r-1)+p^{r-1}(p-2)+1$.
18.09.2024 04:43
700th post! I saw this problem about 9 months ago, and have no idea at all. Now I finally have enough ability to solve, honestly it is just large amount of calculation. Let $T:=\{\zeta^k:\gcd(k,p)=1\},$ then $|T|=p^{r-1}(p-1)$ Note that Cyclotomic Polynomial $$\Phi_{p^r}(x)=\frac{x^{p^r}-1}{\Phi_{p^{r-1}}(x)\cdots \Phi_{{p}}(x)}=\frac{x^{p^r}-1}{x^{p^{r-1}}-1}=x^{p^{r-1}(p-1)}+\cdots +x^{p^{r-1}}+1.$$Define $\sigma_i$ be the denote the elementary symmetric sums for $\frac{1}{1-\zeta}$ and $S_i$ be the Newton Sum. Since $$\begin{aligned} \prod_{\zeta\in T}\left(x-\frac 1{1-\zeta}\right) &=\prod_{\zeta\in T}\frac x{1-\zeta}\left(1-\frac 1x-\zeta\right) \\&=\frac{x^{p^{r-1}(p-1)}\Phi_{p^r}\left(1-\frac 1x\right)}{\Phi_{p^r}(1)} \\&=\frac 1p{x^{p^{r-1}(p-1)}}\sum_{t=0}^{p-1}\left(1-\frac 1x\right)^{p^{r-1}t} \\&=\frac 1p{x^{p^{r-1}(p-1)}}\sum_{t=0}^{p-1}\sum_{j=0}^{p^{r-1}(p-1)}\binom{p^{r-1}t}j\left(-\frac 1x\right) ^j \\&=\frac 1p\sum_{j=0}^{p^{r-1}(p-1)}\left[(-1)^j\sum_{t=0}^{p-1}\binom{p^{r-1}t}j\right]x^{p^{r-1}(p-1)-j} \\&=\sum_{j=0}^{p^{r-1}(p-1)}(-1)^j\sigma_jx^{p^{r-1}(p-1)-j}. \end{aligned}$$Therefore for all $0\le j\le p^{r-1}(p-1),$ $$\sigma_j=\frac 1p\sum_{t=0}^{p-1}\binom{p^{r-1}t}j.$$We first prove that $\sigma_j$ is not an integer iff $j=p^{r-1}(p-1),$ by Lucas Theorem $p\mid \sum_{t=0}^{p-1}\binom{p^{r-1}t}j$ when $p^{r-1}\nmid j.$ When $p^{r-1}\mid j,$ say $j=p^{r-1}j',$ by Lucas Theorem $$\sum_{t=0}^{p-1}\binom{p^{r-1}t}j\equiv \binom{0}0^{r-1}\sum_{t=0}^{p-1}\binom{t}{j'}\equiv \binom{p}{j'+1}\pmod p.$$Which is not multiple of $p$ iff $j=p-1,$ $j=p^{r-1}(p-1).$ Now we calculate Newton's Sum. When $r=1$ obviously the answer is $p-1,$ now let $r\ge 2.$ First for all $k\le p^{r-1}(p-1),$ $$S_k=k(-1)^{k+1}\sigma_k+\sum_{i=1}^{k-1}(-1)^{i+1}\sigma_iS_{k-i}.$$Since $\sigma_1,\ldots ,\sigma_{p^{r-1}(p-1)-1}$ are all integer, apparently by induction we can show $S_1,\ldots ,S_{p^{r-1}(p-1)-1}$ are all integer. Note that $p^{r-1}(p-1)(-1)^{k+1}\sigma_{p^{r-1}(p-1)}\in\mathbb Z,$ this gives $S_{p^{r-1}(p-1)}\in\mathbb Z.$ For all $k>p^{r-1}(p-1),$ $$\sum_{i=0}^{p^{r-1}(p-1)}\sigma_iS_{k-i}=0.$$Since $\sigma_1,\ldots ,\sigma_{p^{r-1}(p-1)-1}$ are all integer, if $n_0$ is the minimum integer s.t. $S_{n_0}\notin\mathbb Z,$ then $n_1:=n_0-p^{r-1}(p-1)$ is the minimum integer s.t. $S_{n_1}\notin p\mathbb Z,$ define $n_2,\ldots$ in this way. Now let $n_0=kp^{r-1}(p-1)+m$ where $k,m\in\mathbb N$ and $m<p^{r-1}(p-1).$ Then $n_k=n_0-kp^{r-1}(p-1)$ is the minimum integer s.t. $S_{n_k}\notin p^k\mathbb Z.$ Now we only need to calculate $\nu_p(S_k)$ where $k\le p^{r-1}(p-1).$ In fact by Newton's Sum straightforward induction shows for $1 \le i \le (p-2)p^{r-1}$, $S_i\in p^{r-1}\mathbb Z$, but $\nu_p(S_{(p-2)p^{r-1}+1})=r-2$. Then induct again shows that for $(p-2)p^{r-1} \leq i \leq (p-1)p^{r-1}$, $S_i\in p^{r-2}\mathbb Z$. Therefore $n_k=p^{r-1}(p-2)+1,$ so $$n_0=\boxed{(r-1)p^{r-1}(r-1)+p^{r-1}(r-2)+1}$$as desired.$\Box$