Problem

Source: TSTST 2021/7

Tags: USA TSTST, combinatorics



HIDE: Let $M$ be a finite set of lattice points and $n$ be a positive integer. A $\textit{mine-avoiding path}$ is a path of lattice points with length $n$, beginning at $(0,0)$ and ending at a point on the line $x+y=n,$ that does not contain any point in $M$. Prove that if there exists a mine-avoiding path, then there exist at least $2^{n-|M|}$ mine-avoiding paths. * A lattice point is a point $(x,y)$ where $x$ and $y$ are integers. A path of lattice points with length $n$ is a sequence of lattice points $P_0,P_1,\ldots, P_n$ in which any two adjacent points in the sequence have distance 1 from each other.

Ankit Bisain and Holden Mui