Solution by TomTom314:
Let $F'$, $B'$, the midpoints of $BP$, $CP$ and $K'$ the circuncenter of $BCP$. Then we can show, $|EE'|=|FF'|=\frac{1}{2}|AP|$ and both lines are perpendicular to $BC$ using the Intercept theorem.
Because $EK$ , $FK$ are parallel to $E'K'$, $F'K'$ we conclude that $KK'$ is perpendicular to $BC$ and therefore $K$ lies on the perpendicular bisector of $BC$.
[asy][asy]
import olympiad;
size(7 cm);
defaultpen(fontsize(10pt));
pair A, B, C, H, E, F, P, M, G, K, O1, O2, O3;
A = (2,5); B = (6,0); C = (0,0); E= (1, 2.5); F= (4,2.5); P= (2,3);
O1 = (P+C)/2;
O2 = (P+B)/2;
M = orthocenter(C,E,P);
H=orthocenter(A,B,C);
G= orthocenter(P,B,F);
K= extension(E,M,F,G);
O3 = (A+P)/2;
draw(circumcircle(A,B,C), dashed+blue);
draw(A--B--C--A);
draw(B--K);
draw(C--K);
draw(E--O1, lightblue);
draw(F--O2, lightblue);
draw(A--O3, lightblue);
dot("$A$",A);dot("$B$",B);dot("$C$",C);dot("$F$" ,F, blue);dot("$E$" ,E, blue);dot("$P$",P, purple);dot("$K$", K, red);dot("$B'$", O1, orange); dot("$F'$", O2, orange);dot(O3);
[/asy][/asy]