Problem

Source: KJMO 2021 P3

Tags: geometry, cyclic quadrilateral, circumcircle, perpendicular bisector, tangent



Let $ABCD$ be a cyclic quadrilateral with circumcircle $\Omega$ and let diagonals $AC$ and $BD$ intersect at $X$. Suppose that $AEFB$ is inscribed in a circumcircle of triangle $ABX$ such that $EF$ and $AB$ are parallel. $FX$ meets the circumcircle of triangle $CDX$ again at $G$. Let $EX$ meets $AB$ at $P$, and $XG$ meets $CD$ at $Q$. Denote by $S$ the intersection of the perpendicular bisector of $\overline{EG}$ and $\Omega$ such that $S$ is closer to $A$ than $B$. Prove that line through $S$ parallel to $PQ$ is tangent to $\Omega$.