Consider an acute-angled triangle ABC, with AC>AB, and let Γ be its circumcircle. Let E and F be the midpoints of the sides AC and AB, respectively. The circumcircle of the triangle CEF and Γ meet at X and C, with X≠C. The line BX and the tangent to Γ through A meet at Y. Let P be the point on segment AB so that YP=YA, with P≠A, and let Q be the point where AB and the parallel to BC through Y meet each other. Show that F is the midpoint of PQ.
Problem
Source: 2021 Iberoamerican Mathematical Olympiad, P2
Tags: geometry, circumcircle
21.10.2021 06:45
∡AXY=∡ACB=∡YAP=∡APY so AYXP is cyclic. Let K=YQ∩XF. ∡QKX=∡QKF=∡EFK=∡ECX=∡ABX=∡QBX so BXQK is cyclic. ∡XKY=∡XKQ=∡XBQ=∡XBA=∡XAY so AYXPK is cyclic, finish off with FP⋅FA=FX⋅FK=FQ⋅FB ◼(Note that in this proof we didn't use the fact that K∈AC.)
21.10.2021 07:15
Spend 3 hours on this problem!, and was it worth it?, every second was! Claim 1: Let YQ∩AC=G then AYXPG is cyclic. Proof: By angle chase: ∠AGY=∠ACB=∠YAP=∠YPA⟹AYPGcyclicBy more angle chase: ∠YXA=∠ACB=∠AGY⟹AYXGcyclicClaim 2: Let (BXF)∩(GQF)=J then J∈(AYXPG) (which is posible thanks to Claim 1) Proof: By angle chase: ∠XJG=∠XJF+∠FJG=∠XBA+∠YQB=∠XBA+∠ABC=∠XBC=180−∠XAGWhich completes the proof Claim 3: X,F,G are colinear. Proof: By angle chase: ∠QGX=∠YAX=∠QBX⟹XBGQcyclicNow we do even more angle chase using Claim 2 ∠XJF=∠XBF=∠FGQ=∠FJQNow by even more angle chase using the tangent line AY ∠FJB=∠YXG=180−∠YAC=∠ABC=∠AQG=∠FJGBy substracting the results on the last 2 angle chases we have ∠XJB=∠QJG and by angle chase ∠XFB=∠XJB=∠QJG=∠QFG⟹X,F,GcolinearMain solution: Since by Claim 3 we have X,F,G colinear and XBGQ cyclic and by Claim 1 we have AXPG cyclic and by definition F is midpoint of AB then by PoP we have that: AF⋅FP=XF⋅FG=BF⋅FQ⟹FP=FQ⟹Fmidpoint ofPQ Thus we are done Note: I claim that JG∩BC=K is the projection from A to BC, can anyone prove it?
21.10.2021 09:21
Here's my solution: Let Z=YQ∪XF. Claim. X, B, Z, Q are concyclic.
Claim. Y, X, P, Z, A are concyclic.
Finally, by PoP we have FP⋅FA=XF⋅FZ=BF⋅FQ⟹FP=FQas desired. ◼
Attachments:

21.10.2021 16:35
[asy][asy] import olympiad;import geometry; size(8cm);defaultpen(fontsize(10pt)); pair A,B,C,E,F,X,Y,D,P,Q,Y,A1,S,T; A=dir(110);B=dir(205);C=dir(335);E=midpoint(A--C);F=midpoint(A--B);X=intersectionpoints(circumcircle(C,E,F),circumcircle(A,B,C))[1]; D=extension(X,F,A,C);P=intersectionpoints(circumcircle(A,D,X),A--B)[1];Y=intersectionpoints(B--100X-99B,circumcircle(A,D,X))[1];Q=extension(A,B,D,Y);A1=intersectionpoints(circumcircle(A,B,C),X--100D-99X)[0];T=A*B/A1;S=intersectionpoints(circumcircle(A,D,X),A--T)[1]; draw(A--B--C--cycle,heavyred+0.5); draw(circumcircle(A,B,C),royalblue); draw(circumcircle(A,D,X),royalblue); draw(arc(circumcenter(C,E,F),C,X),royalblue); draw(A1--X,lightred+0.5); draw(B--Y--A,lightred+0.5); draw(Y--D,lightred+0.5); draw(A--T,lightred+0.5); draw(T--A1,darkred); draw(S--D,darkred); dot("A",A,dir(A)); dot("B",B,dir(B)); dot("C",C,dir(C)); dot("X",X,dir(X)); dot("E",E,dir(E)); dot("F",F,dir(F)); dot("P",P,dir(P)); dot("Q",Q,dir(Q)); dot("Y",Y,dir(Y)); dot("D",D,dir(D)); dot("A′",A1,dir(A1)); dot("S",S,dir(S)); dot("T",T,dir(T)); [/asy][/asy] Observe that P lies on (AYX) as ∡APY=∡YAP=∡ACB=∡AXB=∡AXY. Claim: Let D=¯XF∩¯AC and A′=¯XF∩(ABC). Then, D lies on (AXYP) and ¯DY∥¯BC∥¯AA′. Proof. By Reim's theorem, we have ¯AA′∥¯EF∥¯BC. Therefore, ∡YAD=∡YAB+∡BAC=∡AEF+∡BXC=∡CEF+∡BXC=∡CXF+∡BXC=∡BXD=∡YXD,which means that D lies on (AXYP). Moreover, ∡ADY=∡AXY=∡AXB=∡ACB, which yields that ¯DY∥¯BC, i.e. D lies on ¯QY. Introduce S,T on (AXYPD) and (ABC) such that ¯AB∥¯DS∥¯A′T. By Reim's, A,S,T are collinear. Hence, −1=(A,B;F,P∞)A′=(A,B,X,T)A=(Y,P,X,S)D=(Q,P,F,P∞).
21.10.2021 19:35
We note that ∠XPA=∠XAP=∠ACB=∠YXA, so quadrilateral AYXP is cyclic. Let XY meet AC at I. We now have ∠YIA=∠ACB=YXA, so I lies on (AYXP). Now, by angle chasing, we have ∠BXF=∠BXC+∠CXF=∠BAC+180∘−∠FEC=∠BAC+∠ACB=∠BAC+∠YAB=∠YAI=∠BXI, hence X,F,I are collinear. On the other hand, from the above angle chasing, ∠BXI=180∘−∠ABC=∠BQI, hence BXQI is a cyclic quadrilateral. Now, ¯FP⋅¯FA=¯FX⋅¯FI=¯FQ⋅¯FB implies F is the midpoint of PQ, as desired.
22.10.2021 23:23
I did it using barycentric bash. Our aim is to show that ¯AP=¯BQ, as this is equivalent to F being the midpoint of PQ. Firstly, let's define A=(1,0,0),B=(0,1,0),C=(0,0,1),¯BC=a,¯AC=b,¯AB=c. As E is the midpoint of AC, it follows that E=(12,0,12) and similary we see that F=(12,12,0). Then, we can calculate the equation of (CEF), which gives −a2yz−b2xz−c2xy+b22x+c2−b22y=0The equation of Γ is well known and it's −a2yz−b2xz−c2xy=0Putting both equations together gives b22x+c2−b22y=0So, X is of the form (b2−c2,b2,t) for some t∈R. Replacing this in the Γ equation, it gives −a2b2t−b2(b2−c2)t−c2b2(b2−c2)=0⇔t=−c2(b2−c2)a2+b2−c2which means that X=(b2−c2,b2,−c2(b2−c2)a2+b2−c2). Then, we see that BX=(b2−c2,t,−c2(b2−c2)a2+b2−c2), for t∈R. It is a well know fact that the tangent of A wrt Γ is given by (t,b2,−c2), for t∈R. Then, as Y is the intersection of BX and that tangent, we see that the tangent can be written as (t,b2(b2−c2)a2+b2−c2,−c2(b2−c2)a2+b2−c2), and that Y=(b2−c2,b2(b2−c2)a2+b2−c2,−c2(b2−c2)a2+b2−c2). In order to put Y homogeneous, we sum b2−c2+b2(b2−c2)a2+b2−c2−c2(b2−c2)a2+b2−c2=(b−c)(b+c)(a2+2b2−2c2)a2+b2−c2and by dividing all coordinates by that we get Y=(a2+b2−c2a2+2b2−2c2,b2a2+2b2−2c2,−c2a2+2b2−2c2). As BC∥QY, it follows that Qx=Yx. As Qz=0 and Qx+Qy+Qz=1, we check that Q=(a2+b2−c2a2+2b2−2c2,b2−c2a2+2b2−2c2,0). Therefore, ¯BQ=Qxc=c(a2+b2−c2)a2+2b2−2c2. Then, we calculate →AY=(b2−c2a2+2b2−2c2,b2a2+2b2−2c2,−c2a2+2b2−2c2), which leads to ¯AY2=a2b2c2(a2+2b2−2c2)2+b2c2(b2−c2)a2+2b2−2c2−b2c2(b2−c2)a2+2b2−2c2=a2b2c2(a2+2b2−2c2)2 As ¯AC>¯AB, b>c, so a2+2b2−2c2>0 and ¯AY=abca2+2b2−2c2. As ¯YP=¯YA, it follows that ¯PA=¯YA×2cos∠YAP. We can check that ∠YAP=∠ACB and by the law of cosines in [ABC], we see that 2cos∠ACB=a2+b2−c2ab. Then, ¯PA=abca2+2b2−2c2×a2+b2−c2ab=c(a2+b2−c2)a2+2b2−2c2. So, we get that ¯AP=¯BQ. ◼
23.10.2021 00:28
nixon0630 wrote: Here's my solution: Let Z=AC∪YQ. Claim. Y, X, P, Z, A are concyclic.
Claim. X, B, Z, Q are concyclic.
Finally, by PoP we have FP⋅FA=XF⋅FZ=BF⋅FQ⟹FP=FQas desired. ◼ You didn't prove that X,F,Z are colinear
23.10.2021 06:10
We use directed angles\mod180^\circ. Let S be the intersection of \overline{YQ} with \overline{AC}. Note that \measuredangle APY = \measuredangle YAP = \measuredangle YAB = \measuredangle ACB = \measuredangle AXB = \measuredangle AXY, so AYXP is cyclic. Also, since \measuredangle QPY=\measuredangle APY=\measuredangle ACB and \measuredangle YQP=\measuredangle CBA, we have \measuredangle PYS=\measuredangle PYQ=\measuredangle BAC=\measuredangle PAS, so S\in(AYXP). Now, \measuredangle BXP = \measuredangle YXP = \measuredangle YAP = \measuredangle ACB = \measuredangle AEF = \measuredangle CEF = \measuredangle CXF, which gives \overline{XP} and \overline{XC} are isogonal with respec to \triangle BXF. Due to this, \measuredangle PXF = \measuredangle BXC = \measuredangle BAC = \measuredangle PAS = \measuredangle PXS, giving that X,F,S are collinear. Now, let R be the point in (AYXPS) such that \overline{RS}\parallel\overline{AB} and T be the second interseciton of \overline{AR} with \Gamma. Notice that \measuredangle BXT = \measuredangle BAT = \measuredangle PAR = \measuredangle SPA = \measuredangle SXA = \measuredangle FXA, giving \overline{XT} and \overline{XF} are isogonal with respect to \triangle XAB. Thus, \overline{XT} is the X-symmedian of \triangle XAB and AXBT is harmonic. Let \infty be the point at infinity of \overline{AB}. Then, -1=(AB;XT)\stackrel A= (YP;XR)\stackrel S= (QP;F\infty), implying that F is the midpoint of \overline{PQ}. \blacksquare
23.10.2021 07:14
Let T = \overline{AA} \cap \overline{BC}. [asy][asy] import graph; size(12cm); pen zzttqq = rgb(0.6,0.2,0.); pen yqqqqq = rgb(0.50196,0.,0.); pen qqwuqq = rgb(0.,0.39215,0.); pen yqqqyq = rgb(0.50196,0.,0.50196); pen xdxdff = rgb(0.49019,0.49019,1.); pen cqcqcq = rgb(0.75294,0.75294,0.75294); pair A = (-4.55630,4.74594), B = (-6.,-1.), C = (2.,-1.), F = (-5.27815,1.87297), O = (-2.,1.04932), X = (-6.48864,1.27690), Y = (-6.88720,3.13406), Q = (-4.96129,3.13406), P = (-5.59500,0.61187), T = (-12.86540,-1.), Z = (-1.49456,-3.41657); draw(A--B--C--cycle, linewidth(0.6) + zzttqq); draw(A--B, linewidth(0.6) + zzttqq); draw(B--C, linewidth(0.6) + zzttqq); draw(C--A, linewidth(0.6) + zzttqq); draw(circle((-2.,1.04932), 4.49441), linewidth(0.6) + yqqqqq); draw(Y--Q, linewidth(0.6) + qqwuqq); draw(B--Y, linewidth(0.6) + qqwuqq); draw(C--X, linewidth(0.6) + yqqqyq); draw(Y--P, linewidth(0.6) + qqwuqq); draw(T--B, linewidth(0.6) + yqqqqq); draw(X--(0.55630,4.74594), linewidth(0.6) + xdxdff); draw(A--T, linewidth(0.6) + red); draw((0.55630,4.74594)--Z, linewidth(0.6) + xdxdff); draw((-1.27815,1.87297)--F, linewidth(0.6) + yqqqyq); dot("A", A, dir((5.364, 14.027))); dot("B", B, dir((-24.637, -60.663))); dot("C", C, dir((16.031, -39.399))); dot("E", (-1.27815,1.87297), dir((5.027, 10.705))); dot("F", F, dir((26.514, -36.078))); dot("O", O, dir((6.330, 10.846))); dot("X", X, dir((-40.985, -38.847))); dot("Y", Y, dir((-49.329, 9.349))); dot("Q", Q, dir((17.510, -16.168))); dot("P", P, dir((19.922, -17.709))); dot("T", T, dir((-44.089, -57.828))); dot("Z", Z, dir((-8.773, -64.261))); dot("A'", (0.55630,4.74594), dir((5.876, 14.027))); [/asy][/asy] Claim: [Main claim] \frac{AX}{BX} = \frac{AT}{AB}. Proof. Let A' denote the point such that ABCA' is an isosceles trapezoid with AA' \parallel BC. Note that A' lies on line FX, because \measuredangle CXF = \measuredangle CEF = \measuredangle AEF = \measuredangle ACB. Now let Z be the harmonic conjugate of X with respect to AB. Projecting AXBZ through A' onto line AB we find \overline{A'Z} \parallel \overline{AB}. Finally from \triangle BAT \sim \triangle A'AC, we get \frac{AX}{XB} = \frac{AZ}{ZB} = \frac{BA'}{AA'} = \frac{AC}{AA'} = \frac{AT}{AB}. \qquad\blacksquare Since \measuredangle APY = \measuredangle YAP = \measuredangle YAB = \measuredangle ACB = \measuredangle AXB = \measuredangle AXY we get YXPA is cyclic and hence BP \cdot BA = BX \cdot BY = BX \cdot \frac{AB \cdot AY}{AX} with the last equality due to \triangle BYA \sim \triangle AYX. Meanwhile, AQ = \frac{AY}{AT} \cdot AF = \frac{AY}{AT} \cdot AB. Combining with the main claim, we have AQ = BP as needed.
23.10.2021 12:54
Let \angle XBA=t. A' \in (ABC) and AA' \parallel BC. A',F,P are collinear because \angle A'XC=\angle A'AC=\angle AEF=\angle FXC. Applying sin theorem in triangle AYQ and AXB implies (1), BYP and AA'B implies (2): (1)BP=YP \frac{\sin(C-t)}{sin(t)}=YP \frac{XB}{XA}(2)AQ=AY \frac{\sin(B-C)}{\sin(C)}=AY \frac{A'A}{A'B} We are done because \frac{XB}{XA}=\frac{A'A}{A'B} from ratio lemma.
24.10.2021 17:09
Here's another approach using trigonometry in the inversed figure. We'll prove that \overline{AP} + \overline{AQ} = \overline{AB}. Firstly, let's invert around A with radius 1. Let R' be the inverted point of R. As E and F are the midpoints of AC and AB, it follows that C' and B' are the midpoints of AE' and AF', respectively. The circle (CEF) inverts to the circle (C'E'F') and \Gamma inverts to B'C', so X' is the intersection of (C'E'F') and B'C'. The line BX inverts to the circle (AB'X') and the tangent to \Gamma through A inverts to the line through A parallel to B'C'. As \overline{YP} = \overline{YA}, \angle APY = \angle YAP, thus, in the inverted picture, it stays \angle P'Y'A = \angle Y'AP'. As YQ \parallel BC, it follows that \angle AQY = \pi - \angle YQB = \pi - \angle CBA, therefore, in the inverted figure, \angle Q'Y'A = \pi - \angle AC'B'. Finally, we check that the condition \overline{AP} + \overline{AQ} = \overline{AB} becomes \frac1{\overline{AP'}} + \frac1{\overline{AQ'}} = \frac1{\overline{AB'}}. Let's define \angle B'AC' = \alpha, \angle C'B'A = \beta and \angle AC'B' = \gamma. Let's suppose wlog that the circunradius of [AB'C'] is \frac12. Thus, \overline{AB'} = \overline{B'F'} = \sin{\gamma}. Now, let's see that \angle P'Y'A = \angle Y'AP' = \pi - \angle AB'X' = \angle X'Y'A, so, Y', X' and P' are collinears. Then, we check that \angle F'X'B' = \pi - \angle C'E'F' = \pi - \gamma. So, as \angle X'B'F' = \beta, we see that \angle B'F'X' = \pi - (\pi - \gamma) - \beta = \gamma - \beta. Using the law of sines in [X'F'B'], \overline{X'B'} = \frac{\overline{B'F'}\sin{\angle B'F'X'}}{\sin{F'X'B'}} = \sin{\gamma - \beta}. As [AY'X'B'] is an isosceles trapezium, it follows that \overline{AY'} = \overline{B'X'} + 2\overline{AB'}\cos{Y'AB'} = \sin{\gamma - \beta} + 2\sin{\gamma}\cos{\beta} As [AY'P'] is isosceles, we can calculate \overline{AP'} = \frac{\overline{AY'}}{\cos{Y'AP'}} = \frac{\sin{\gamma - \beta} + 2\sin{\gamma}\cos{\beta}}{2\cos{\beta}} Now, we see that \angle AQ'Y' = \pi - \angle Q'Y'A - \angle Y'AQ' = \pi - (\pi - \gamma) - \beta = \gamma - \beta So, by the law of sines in [AY'Q'], \overline{AQ'} = \frac{\overline{AY'}\sin{\angle Q'Y'A}}{\sin{\angle AQ'Y'}} = \frac{(\sin{\gamma - \beta} + 2\sin{\gamma}\cos{\beta})\sin{\gamma}}{\sin{\gamma - \beta}} Now, we just replace in \frac1{\overline{AB'}} = \frac1{\overline{AQ'}} + \frac1{\overline{AP'}}, giving \frac1{\sin{\gamma}} = \frac{\sin{\gamma - \beta}}{(\sin{\gamma - \beta} + 2\sin{\gamma}\cos{\beta})\sin{\gamma}} + \frac{2\cos{\beta}}{\sin{\gamma - \beta} + 2\sin{\gamma}\cos{\beta}} \Leftrightarrow \sin{\gamma - \beta} + 2\sin{\gamma}\cos{\beta} = \sin{\gamma - \beta} + 2\sin{\gamma}\cos{\beta}which is true, ending the proof. \blacksquare
Attachments:

02.11.2021 19:45
Cute
20.01.2022 08:49
07.03.2022 08:48
Nice problem Let XF meet YQ at S. Claim1 : BXQS is cyclic. Proof : \angle XBQ = \angle XBA = \angle XCE = \angle EFS = \angle FSQ = \angle XSQ. Claim2 : AYXPS is cyclic. Proof : \angle AXY = \angle ACB = \angle YAP = \angle APY so AYXP is cyclic. YSX = \angle SFE = \angle ECX = \angle ACX = \angle YAX so AYXS is cyclic. Now we have PF.FA = FX.FS = QF.FB so \frac{FP}{FQ} = \frac{FB}{FA} = 1 so FP = FQ. we're Done.
07.03.2022 08:59
We can also prove S lies on AC. Let YQ meet AC at S' we have \angle AS'Y = \angle ACB = \angle YAP = \angle APY so AYPS' is cyclic but we had AYXPS is cyclic so AYXPSS' is cyclic but then the circle meets line YQ at three different points Y,S,S', so S' is S.
25.05.2022 13:28
Part 1: Extend FX to meet \Gamma again at A'. Then \angle A'XC \ (FXC)=\angle FEA = \angle C. Hence arcs AB and A'C are equal so AA'CB is an isosceles trapezium. Part 2: Consider Pascal's Theorem on AABBXA'. We will have AA\cap BX = Y, BB\cap AA'=Z, and AB\cap A'X=F are collinear. Part 3: Note that YP\parallel ZB (since \angle YPA=\angle YAP=\angle C=\angle ZBA), YQ\parallel ZA, and PQ lies on AB. Hence \triangle ZBA\sim\triangle YPQ. Since ZYF is the Z-median of \triangle ZAB, it is also the Y-median of \triangle YPQ. Hence FP=FQ.
Attachments:

04.07.2022 23:55
Let A' be such that AA'BC is an isosceles trapezoid, and let Z=XA'\cap AC. Since C,E,F,X are concyclic, then \measuredangle CXF=\measuredangle AEF=\measuredangle ACB=\measuredangle CXA' \Longrightarrow X-F-A' \thickspace \text{collinear.} By Pascal on AACBXA' we get that YZ\parallel BC, which means Y-Q-Z collinear. Since \triangle AQZ and \triangle ABC are homothetic, then they share their circumcircles are tangent at A, and so YQ\cdot YZ=YA^2=YP^2=YX\cdot YB \Longrightarrow BXQZ \thickspace \text{cyclic} \Longrightarrow FQ\cdot FB=FX\cdot FZ Performing an inversion centered at Y, points A and P would remain fixed; it carries Q to Z and X to B. Since A-Q-P-B are collinear, then AZPXY is cyclic, so FX\cdot FZ=FA\cdot FP Therefore FQ\cdot FB=FX\cdot FZ=FA\cdot FP \Longrightarrow FQ=FP, as desired.
Attachments:

10.10.2023 23:04
Define some new points: 1. Z = \overline{EF} \cap \overline{AY} 2. P' is the other intersection of \overline{CX} and the circumcircle of \triangle APY. Claim: APYX are cyclic. Proof: Note that \angle YPX = \angle YBP because of power of point (PY^2 = AY^2 = YX \cdot YB). We now do a simple angle chase: \angle YAX = \angle ACX and \angle YPX = \angle YBP = \angle XBA = \angle ACX. So, \angle YAX = \angle YPX. Claim: C,P',X,Z are collinear. Proof: Apply radax theorem on the circumcircles of \triangle AFE,\triangle ABC,\triangle CEF Claim: PP' \parallel BC Proof: \angle XP'P = \angle XAP = \angle XAB = \angle XCB Claim: YP' \parallel AC Proof: \angle YP'Z = \angle YP'X = \angle YAX = \angle ACX = \angle ACZ We note that \frac{ZP'}{ZC} = \frac{FP}{FB} = \frac{ZY}{ZA} = \frac{FQ}{FA} = \frac{FQ}{FB}. Therefore, FQ = FP. \blacksquare [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(25cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -8.77791256197981, xmax = 18.465449665946593, ymin = -4.0316249160484965, ymax = 13.42689090521705; /* image dimensions */ pen qqwuqq = rgb(0,0.39215686274509803,0); pen fuqqzz = rgb(0.9568627450980393,0,0.6); pen ccqqqq = rgb(0.8,0,0); pen ffvvqq = rgb(1,0.3333333333333333,0); /* draw figures */ draw(circle((7,4.339899853470883), 8.236184234107235), linewidth(2) + blue); draw((2.578738377140784,11.288797348785437)--(14,0), linewidth(2) + blue); draw((2.578738377140784,11.288797348785437)--(0,0), linewidth(2) + blue); draw((xmin, 0*xmin + 0)--(xmax, 0*xmax + 0), linewidth(2) + blue); /* line */ draw(circle((4.789369188570392,-3.6076901985800918), 9.891973944233138), linewidth(2)); draw((xmin, -3.429874191921271*xmin + 0)--(xmax, -3.429874191921271*xmax + 0), linewidth(2) + qqwuqq); /* line */ draw((xmin, 0.6362536828094455*xmin + 9.64806555932756)--(xmax, 0.6362536828094455*xmax + 9.64806555932756), linewidth(2) + fuqqzz); /* line */ draw((xmin, 0*xmin + 8.13836949633405)--(xmax, 0*xmax + 8.13836949633405), linewidth(2) + ccqqqq); /* line */ draw((-2.372789507995125,8.13836949633405)--(xmax, -1.612940444789682*xmax + 4.311201331916102), linewidth(2) + fuqqzz); /* ray */ draw((xmin, -0.2781510869271784*xmin + 3.894115216980497)--(xmax, -0.2781510869271784*xmax + 3.894115216980497), linewidth(2) + ffvvqq); /* line */ draw((xmin, 0*xmin + 5.644398674392718)--(xmax, 0*xmax + 5.644398674392718), linewidth(2) + blue); /* line */ draw(circle((1.6966721339411817,7.208768531223929), 4.174287485251179), linewidth(2)); draw((xmin, 0*xmin + 3.1504278524513922)--(xmax, 0*xmax + 3.1504278524513922), linewidth(2) + ccqqqq); /* line */ draw((xmin, -0.9884019578179827*xmin + 5.793099701141701)--(xmax, -0.9884019578179827*xmax + 5.793099701141701), linewidth(2) + blue); /* line */ /* dots and labels */ dot((2.578738377140784,11.288797348785437),dotstyle); label("A", (2.659159316725142,11.48093646036516), NE * labelscalefactor); dot((0,0),dotstyle); label("B", (-0.2964884721536658,-0.36001275595058996), NE * labelscalefactor); dot((14,0),dotstyle); label("C", (14.188021499432542,-0.34165469515010044), NE * labelscalefactor); dot((8.289369188570392,5.644398674392718),linewidth(4pt) + dotstyle); label("E", (8.368516225677373,5.7899376122134045), NE * labelscalefactor); dot((1.289369188570392,5.644398674392718),linewidth(4pt) + dotstyle); label("F", (1.1354402702845143,5.808295673013894), NE * labelscalefactor); dot((-1.2355511849407201,4.2377851220259215),linewidth(4pt) + dotstyle); label("X", (-1.7100591537913565,4.3947249913762), NE * labelscalefactor); dot((-2.372789507995125,8.13836949633405),linewidth(4pt) + dotstyle); label("Y", (-2.7197524978182783,8.36006612428194), NE * labelscalefactor); dot((0.719662950491684,3.150427852451391),dotstyle); label("P", (0.786637115075214,3.3299574649478063), NE * labelscalefactor); dot((1.8590754266491012,8.13836949633405),linewidth(4pt) + dotstyle); label("Q", (1.9248368847055624,8.28663388107998), NE * labelscalefactor); dot((-6.292563788796045,5.644398674392718),linewidth(4pt) + dotstyle); label("Z", (-6.226142110711771,5.7899376122134045), NE * labelscalefactor); dot((2.67368131739068,3.150427852451389),linewidth(4pt) + dotstyle); label("P'", (2.7509496207275896,3.2932413433468275), NE * labelscalefactor); label("P'Y", (-7.401058001943098,12.986297446005302), NE * labelscalefactor,blue); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy]
15.04.2024 20:12
Let S = XF \cap AC, R = XF \cap \Gamma \neq X. Since \measuredangle YPA = -\measuredangle YAP = -\measuredangle YAB = \measuredangle YXA, so (APXY). Also, by Reim's Theorem on AEC and RFX, we get AR \parallel BC, so \measuredangle YAS = \measuredangle ABC = \measuredangle BCR = \measuredangle BXR, so (ASPXY), and by Reim's Theorem again on ASC and BXY, we get SY \parallel BC, so S \in YQ. Finally, note that \Delta XPB \stackrel{-}\sim \Delta ESF and \Delta XPF \stackrel{-}\sim \Delta ASF, so \frac{AQ}{QF} = \frac{AS}{SE} = \frac{AS}{SF} \cdot \frac{SF}{SE} = \frac{XP}{PF} \cdot \frac{PB}{PX} = \frac{BP}{PF} where lengths are directed as necessary. As F is the midpoint of AB, this finishes the problem.
28.09.2024 06:14
Aprovecho para dejar otro problema: Desde un punto P exterior a una circunferencia, se trazan las tangentes PC y PD, Formando entre si un ángulo recto. Luego se traza la secante PAB, de modo que el arco BC es el doble del arco AC. Hallar la medida del ángulo BPC. Entonces trazamos BC, AC, AD, CD y sea O el centro de la cía. Entonces trazamos tb OC y OD. ⟹ ∠OCP=∠ODP=∠CPD=90°…(θ) ⟹Sabemos que (BC) ̂=2(AC) ̂ ⟹∠PBC=x y ∠BAC=2x Por ángulo semiinscripto ∠ACP=x ⟹Por ángulo externo en ∆ACP: ∠BPC=x ⟹∠CAP=180°−2x Luego:∠APD=90°−x ⟹Por pot. de un punto PC=PD. ⟹∆CDP triángulo rectángulo isósceles. ⟹∠CDP=∠DCP=45° Entonces por (θ) y por ser complementos: ∠ODC=∠OCD=45° Por ser suplemento ∠COD=90° ⟹ ∆CDO es triángulo rectangulo isósceles. ⟹Por arco capaz ∠CBD=45° y entonces ∠PBD=45°−x Por semiinscripto ∠ADP=45°−x Por se suplemento ∠DAP=45°+2x Aplicamos T. del Seno en ∆ACP Y ∆APD: AP/sinx =PC/sin〖180°−2x〗 ...(1) AP/sin〖45°−x〗 =PD/sin〖45°+2x〗 …(2) Sabemos que PC=PD ⟹Por lo anterior en (1) y (2) tenemos lo siguiente: sin〖180°−2x〗/sinx =sin〖45°+2x〗/sin〖45°−x〗 ⟹Aplicando transformaciones: sin2x/sinx =(〖√2/2(sin〗2x+cos2x))/(√2/2(cosx−sinx))⟹(2 sinx cosx)/sinx =(sin2x+cos2x)/(cosx−sinx ) ⟹2〖cosx〗^2−2 sinx cosx=sin2x+2〖cosx〗^2−1 ⟹−sin2x=sin2x−1⟹2sin2x=1⟹sin2x=1/2 Entonces 2x=150° o 2x=30°. Notemos que si pasa lo primero ∠PAD=195° Lo cual no puede pasar ∵La suma de los ángulos internos de un triángulo es 180° Entonces 2x=30° ⟹x=15° ∴∠BPC=15°∎