The sequences $a_n$, $b_n$ and $c_n$ are defined recursively in the following way: $a_0 = 1/6$, $b_0 = 1/2$, $c_0 = 1/3,$ $$a_{n+1}= \frac{(a_n + b_n)(a_n + c_n)}{(a_n - b_n)(a_n - c_n)},\,\, b_{n+1}= \frac{(b_n + a_n)(b_n + c_n)}{(b_n - a_n)(b_n - c_n)},\,\, c_{n+1}= \frac{(c_n + a_n)(c_n + b_n)}{(c_n - a_n)(c_n - b_n)}$$For each natural number $N$, the following polynomials are defined: $A_n(x) =a_o+a_1 x+ ...+ a_{2N}x^{2N}$ $B_n(x) =b_o+a_1 x+ ...+ a_{2N}x^{2N}$ $C_n(x) =a_o+a_1 x+ ...+ a_{2N}x^{2N}$ Assume the sequences are well defined. Show that there is no real $c$ such that $A_N(c) = B_N(c) = C_N(c) = 0$.
Problem
Source: OLCOMA Costa Rica National Olympiad, Final Round, 2014 4.6
Tags: algebra, polynomial, Sequences, recurrence relation