Problem

Source: 2021 Mediterranean Mathematical Olympiad P3 MMC

Tags: geometry, incenter, Equilateral, Fixed point, fixed



Let $ABC$ be an equiangular triangle with circumcircle $\omega$. Let point $F\in AB$ and point $E\in AC$ so that $\angle ABE+\angle ACF=60^{\circ}$. The circumcircle of triangle $AFE$ intersects the circle $\omega$ in the point $D$. The halflines $DE$ and $DF$ intersect the line through $B$ and $C$ in the points $X$ and $Y$. Prove that the incenter of the triangle $DXY$ is independent of the choice of $E$ and $F$. (The angles in the problem statement are not directed. It is assumed that $E$ and $F$ are chosen in such a way that the halflines $DE$ and $DF$ indeed intersect the line through $B$ and $C$.)