Let $a,b,c,d$ be odd integers such that $0<a<b<c<d$ and $ad=bc$. Prove that if $a+d=2^k$ and $b+c=2^m$ for some integers $k$ and $m$, then $a=1$.
Problem
Source: IMO 1984, Day 2, Problem 6
Tags: number theory, equation, Divisibility, power of 2, IMO, IMO 1984, Hi
13.02.2005 11:04
it can be deduce quickly from Four Number Theorem
13.02.2005 11:14
What is Four Number Theorem? PS. Ehsan! Please, read http://www.artofproblemsolving.com/viewtopic.php?p=140098 and name problems properly next time! Regards, Myth
13.02.2005 11:17
Myth wrote: What is Four Number Theorem? The equation $xy=zt$ has only postive integers in forms $x=am,y=bn,z=an,t=bm$ where $(m,n)=1$
13.02.2005 11:55
That is what I thought.
01.07.2011 17:55
How do you use this Theorem?
24.04.2013 21:40
use some facts like b+c\mid a^2 + bc b+c\mid c^2 + ad b+c\mid d^2 +bc b+c\mid b^2+ ad (for example, ad=bc then a^2 +ad =a^2+bc so we'll have a(a+d)=a^2+bc and because b+c|a+d we'll get b+c| a^2 +bc) after that try to use b+c|(b-a)(b+a) and b+c|(c-a)(c+a), btw besides b+c can not devide both c-a and b-a (unless a very special case as m<2) By these all you can get (a,b,c,d)=(1,2^(s)-1,2^(s)+1,2^(2s)-1)
24.04.2013 21:45
Hint : 1/2[b+c]|c+a hence b+2a =<c 1/2[b+c] | b+a hence c=<b+2a so c= b+2a and :ad = b^2 +2ab, a^2+ ad= (a+b)^2 , a(a+d)=(a+b)^2 because b+c=2(b+a) so the only prime factor of b+a is 2,so a is a power of 2,and it's odd too,so a=1
31.05.2015 16:34
Let $f:[1,b]\rightarrow \mathbb{R},\ f(x)=x+\dfrac{bc}{x}$. As $f^\prime (x)=1-\dfrac{bc}{x^2}\le 0$, we infer that $f(x)\ge f(b)=b+c,\ \forall x\in [1,b]$; in particular, $a+d=f(a)\ge b+c\Leftrightarrow k\ge m$. Now, $ad=bc\Leftrightarrow a(2^k-a)=b(2^m-b)\Leftrightarrow (b-a)(a+b)=2^m(b-2^{k-m}a)$, hence $2^m|(b-a)(a+b)$. It is easy to see that for $x,y\in \mathbb{Z}$, if $v_2(x\pm y)\ge 2$, then $v_2(x\mp y)=1$. If $v_2(b-a)\ge 2$, $v_2(a+b)=1$, so $v_2(b-a)\ge m-1\Rightarrow b>2^{m-1}$, which is in contradiction with the fact that $b<\dfrac{b+c}{2}=2^{m-1}$. Thereby, $v_2(a+b)\ge m-1,\ v_2(b-a)=1$. Write $a+b=2^{m-1}\alpha$. If $\alpha \ge 2\Rightarrow2^m\le a+b<b+c=2^m$, contradiction; so $a+b=2^{m-1}$ and $b-a=2\beta$, or equivalently $a=2^{m-2}-\beta,\ b=2^{m-2}+\beta$
Substituting back, $(b-a)(a+b)=2^m(b-2^{k-m}a)\Leftrightarrow 2^m\beta=2^m(2^{m-2}+\beta-2^{k-m}a)\Leftrightarrow 2^{k-m}a=2^{m-2}$ As $m>2$ and $a$ is odd, we get that $a=1$. Furthermore, $k=2m-2$, hence $d=2^{2m-2}-1$. Now $b(2^m-b)=2^{2m-2}-1\Leftrightarrow \left ( b-(2^{m-1}-1) \right ) \left ( b-(2^{m-1}+1)\right )=0$ which together with the fact that $b<c$, we get that $b=2^{m-1}-1,\ c=2^{m-1}+1$, so the family of the solutions $(a,b,c,d)$ is described by the set $$ M=\{ \left (1,2^{m-1}-1,2^{m-1}+1,2^{2m-2}-1 \right )|\ m\in \mathbb{N},m\ge 3 \}$$
23.06.2019 18:46
Note that, if $k\leqslant m$, then using $a+d\leqslant b+c$, and $ad=bc$, we get $(d-a)^2\leqslant (c-b)^2$, which is clearly impossible. Thus, $k>m$ must hold. Next, observe that, $b+c =2^m$ and $b<c$ implies $b<2^{m-1}$. Keeping this in mind, we now observe that, $bc=b(2^m-b)=ad=a(2^k-a)$, implies $b\cdot 2^m - a\cdot 2^k = (b-a)(b+a)$. Thus, $2^m \mid (b-a)(b+a)$. Now, note also that, if $d={\rm gcd}(b-a,b+a)$, then $d\mid 2b$, and thus, the largest power of $2$ dividing either $b-a$ or $b+a$ is exactly $2$. Clearly, $b-a<2^{m-1}$, and thus, $2^{m-1}\mid b+a$. Moreover, if $b+a\geqslant 2\cdot 2^{m-1}$, then we again have a contradiction, as $b,a<2^{m-1}$. Thus, $b+a=2^{m-1}$. This yields, $b-a = 2(b-a\cdot 2^{k-m})$, which brings us, $b=(2^{k-m+1}-1)a$. Now, using $b+a=2^{k-m+1}a = 2^{m-1}$, we immediately obtain $a=2^{2m-k-2}$. This immediately establishes (since $a$ is odd), that $a=1$.
19.04.2022 14:38
$$ad=bc \implies a((a+b)-(b+c))=(a-b)(a-c) >0.$$It follows that $a+d > b+c, 2^k >2^m$ and $k>m.$ Since $ad=a(2^k-a)=bc=b(2^m-b$ we get $$2^mb-2^ka= b^2-a^2=(a+b)(a-b).$$Now $2^m(b-2^{k-m}a)=(b-a)(b+a) \implies 2^m|(b-a)(b+a).$ But since the difference between $b-a$ and $b+a$ is an odd multiple of 2, we have that 4 must not divide either one of them. It follows that $2^{m-1}|b-a$ or $2^{m-1}|b+a.$ But $0<b-a<b<2^{m-1} \implies 2^{m-1}|b-a.$ Now $0<b+a<b+c=2^m \implies b+a=2^{m-1} \implies c=2^{m-1}.$ So $$ad=bc=(2^{m-1}-a)(2^{m-1}+a) \implies a(a+d)=2^{2m-2} \implies a=1.$$Q.E.D.
26.04.2022 00:48
dyta wrote: How do you use this Theorem? Let $a=xy, b=xt, c=yz, d=zt$ with odd positive integers $x,y,z,t$ such that $x<z$ and $y<t$. It is easy to see that $k>m>2$. Further, $$2^m(2^{k-m}+1)=a+b+c+d=(z+x)(t+y),$$$$2^m(2^{k-m}-1)=a-b-c+d=(z-x)(t-y).$$Of course, numbers $x\pm z, y\pm t$ are even. If both $x+z$ and $y+t$ are divisible by $4$, then $x-z, y-z$ are not divisible by $4$, so $m=2$, that's impossible. Similar things happen when both $x-z$ and $y-t$ are divisible by $4$, so we have two cases: 1) $\nu_2(z+x)=1, \nu_2(t+y)=m-1, \nu_2(z-x)=m-1, \nu_2(t-y)=1$. So $2(z-x)\geq 2^m=xt+yz$, hence $y=1$. Further, $2(t+1)\geq 2^m=xt+z$, therefore $x=1$, and we finally get $a=xy=1$. 2) $\nu_2(z+x)=m-1, \nu_2(t+y)=1, \nu_2(z-x)=1, \nu_2(t-y)=m-1$. Here $2(t-y)\geq 2^m=xt+yz$, hence $x=1$. Also we have that $2(z+1)\geq 2^m=t+yz$, therefore $y=1$ and $a=xy=1$ again. Let me underly an evident inflation of IMO problems, because similar problem P5 from IMO2015 was harder than this one.
04.07.2022 00:46
Four number theorem does not exist. We claim that the solutions are of the form $(a,b,c,d) = (1,2^{m-1}-1, 2^{m-1}+1, 2^{2m-2}-1)$ and thus $k=2m-2$. Let \begin{align} a&=2^{k-1} - x\\ d&= 2^{k-1}+x\\ b &=2^{m-1} - y\\ c &= 2^{m-1}+y \end{align}where $2^{k-1}-1 \geq x>y\geq 1$ are odd integers. Then, the $ad=bc$ condition becomes \[2^{2k-2} - x^2 = 2^{2m-2} - y^2 \Longrightarrow 2^{2k-2} - 2^{2m-2} = x^2-y^2\] $\textbf{Claim: }$$k\geq 2m-2$. $\textbf{Proof: }$ Note that \[k\geq v_2(x^2-y^2) = v_2(2^{2k-2} - 2^{2m-2}) = 2m-2\]where the first inequality is true because $x,y$ odd implies that$\min \{v_2(x-y),v_2(x+y)\} = 1$, and $y<x<2^{k-1}$ implies that $\max \{v_2(x-y),v_2(x+y)\}\leq k-1$. $\square$ $\textbf{Claim: }$ $k\leq 2m-2$ with equality when $x=2^{k-1}-1$. $\textbf{Proof:}$ Note that \[2^{2k-2} - 2^{2m-2} = x^2-y^2 \leq (2^{k-1}-1)^2 - 1^2,\]thus $2^{2k-2} - 2^{2m-2} \leq 2^{2k-2} - 2^k$, so $k\leq 2m-2$. $\square$ Thus, we must have $k=2m-2$, and so the $x=2^{k-1}-1 \Longrightarrow a=1$ equality case must hold and we're done. $\blacksquare$.
30.10.2024 09:06
Neither 4-Number Lemma nor LTE : Since $ad=bc$, we have: $$a((a+d)-(b+c)) = a^2+ad-ab-ac = a^2-ab-ac+bc=(a-b)(a-c)>0$$Therefore $a+d > b+c$ or $k>m$. Note that: $$ad=bc \implies a (2^k-a) = b(2^m-b) \implies (b-a)(b+a) = b^2-a^2=2^mb-2^ka = 2^m(b-2^{k-m}a)$$Note that $a, b, c, d$ are odd integers. Since $b-a, b+a$ have a difference of $2a$ which is an odd multiple of $2$, we must have either: $2^{m-1}|b-a$ or $2^{m-1}|a+b$. Notice that: $b-a < b < 2^{m-1}$ which implies $2^{m-1}|a+b$. Notice that: $a+b < b+c = 2^m$ which implies $a+b=2^{m-1}$. Also, we have: $b=2^{m-1}-a, c=2^{m-1}+a$. Thus: $$ad=bc=(2^{m-1}-a)(2^{m-1}+a) = 2^{2m-2}-a^2 \implies a(a+d)=2^{2m-2}$$Since $a$ is odd integer, $a=1$ and we are done.
03.02.2025 16:55
Note that $2^{m - 1} < c < d < 2^k \implies m - 1 < k \implies m \leq k$. So, $2^m \mid a + d \implies ad \equiv -a^2\mod{2^m}$. Note that $2^m \mid b + c \implies bc \equiv -b^2 \mod{2^m}$, and $ad = bc \implies -b^2 \equiv -a^2 \mod{2^m} \implies 2^m \mid (b - a)(b + a)$. If $4 \mid b - a$, $b + a \equiv 2\mod{4} \implies 2^{m - 1} \mid b - a$, a contradiction as $2b < 2^m \implies b < 2^{m - 1}$. So, $4 \mid b + a$ and $b - a \equiv 2\mod{4} \implies 2^{m - 1} \mid b + a$. Since $b < 2^{m - 1}$, $a < 2^{m - 1}$ and $b + a < 2\cdot2^{m - 1} \implies b + a = 2^{m - 1}$. Hence, $2b + 2a = 2^m = b + c \implies 2a + b = c$, and $\gcd(a, b) = 1$. If $a \neq 1$, consider a prime $p$ such that $p \mid a$. $ad = bc \implies p \mid bc \implies p \mid c \implies p \mid 2a + b \implies p \mid b$, a contradiction, so $a = 1$.