Let $a$, $b$, $c$ be positive real numbers such that $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2} = \frac{27}{4}.$ Show that: $$\frac{a^3+b^2}{a^2+b^2} + \frac{b^3+c^2}{b^2+c^2} + \frac{c^3+a^2}{c^2+a^2} \geq \frac{5}{2}.$$ Proposed by Nikola Velov
Problem
Source: 2021 Junior Macedonian Mathematical Olympiad P4
Tags: inequalities
09.06.2021 03:23
Attachments:


09.06.2021 03:34
sqing wrote:
wdym by that
09.06.2021 04:39
Let $a$, $b$, $c$ be positive real numbers such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} =6.$ Show that$$\frac{a^2+b}{a+b} + \frac{b^2+c}{b+c} + \frac{c^2+a}{c+a} \geq \frac{9}{4}.$$Solution: $$\sum \frac{a^2+b}{a+b} \geq\sum \frac{a+b-\frac{1}{4}}{a+b} =3-\frac{1}{4}\sum \frac{1}{a+b} \geq 3-\frac{1}{16}\sum \left(\frac{1}{a}+\frac{1}{b}\right)=\frac{9}{4}.$$ Let $a$, $b$, $c$ be positive real numbers such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} = \frac{9}{2}.$ Show that$$\frac{a^2+b}{a+b} + \frac{b^2+c}{b+c} + \frac{c^2+a}{c+a} \geq \frac{5}{2}.$$
09.06.2021 05:32
Let $a$, $b$, $c$ be positive real numbers such that $\frac{1}{a^{n-1}}+\frac{1}{b^{n-1}}+\frac{1}{c^{n-1}} =\frac{3n^{n-1}}{(n-1)^{n-1}} .$ Show that$$\frac{a^n+b^{n-1}}{a+b^{n-1}} + \frac{b^n+c^{n-1}}{b^{n-1}+c^{n-1}} + \frac{c^n+a^{n-1}}{c^{n-1}+a^{n-1}} \geq \frac{3(2n-1)}{2n}.$$Where $2\leq n\in N.$ My solution: $$\sum \frac{a^n+b^{n-1}}{a^{n-1}+b^{n-1}} \geq\sum \frac{a^{n-1}+b^{n-1}-\frac{(n-1)^{n-1}}{n^n}}{a+b} =3-\frac{(n-1)^{n-1}}{n^n}\sum \frac{1}{a^{n-1}+b^{n-1}}$$$$ \geq 3-\frac{(n-1)^{n-1}}{4n^n}\sum \left(\frac{1}{a^{n-1}}+\frac{1}{b^{n-1}}\right)=\frac{3(2n-1)}{2n}.$$
09.06.2021 07:22
Let $a$, $b$, $c$ be positive real numbers such that $a+b+c=1.$ Show that$$\frac{a^2+b}{a+b} + \frac{b^2+c}{b+c} + \frac{c^2+a}{c+a} \geq 2.$$
09.06.2021 08:30
wrong solution
09.06.2021 09:21
iman007 wrote: sqing wrote: Let $a$, $b$, $c$ be positive real numbers such that $a+b+c=1.$ Show that$$\frac{a^2+b}{a+b} + \frac{b^2+c}{b+c} + \frac{c^2+a}{c+a} \geq 2.$$ note that: \[\sum \frac{a}{a+b} \ge \frac32\]so we have to prove that: \[\sum \frac{a^2}{a+b} \stackrel{?}{\ge} \frac12\]which is straight forward titu. No.
09.06.2021 14:14
sqing wrote: No. It is a nice inequality. Sorry for the lack of attention here is the corrected proof First note that by C-S we have: \[\sum \frac{a^2+b}{a+b} \ge \frac{(\sum \sqrt{a^2+b})^2}{2}\] It suffices to show that: \[\sum \sqrt{a^2+b} \ge 2 \quad (1)\] on the other hand we have that $\sum \sqrt{a^2+b}=\sum \sqrt{a^2+b(\sum a)}$ also: \[2\sum \sqrt{a^2+b^2+ab+bc}\sqrt{b^2+c^2+ca+cb} \ge 2(\sum a^2 +3\sum ab)\] which implies: \[\sum \sqrt{a^2+b(\sum a)} \ge 2(\sum a) \quad (2)\] now considering the fact that $a+b+c=1$ by just putting it in $(2)$ we instantly get the desired result.
09.06.2021 15:53
Attachments:
