Show that for an arbitrary tetrahedron there are two planes such that the ratio of the areas of the projections of the tetrahedron onto the two planes is not less than $\sqrt2$.
Problem
Source: Serbia MO 2006 3&4th Grades P3
Tags: geometry, 3D geometry, tetrahedron, ratio, inequalities
14.05.2021 04:35
Bump....
23.01.2024 23:07
Bump$~~~~~$
24.01.2024 11:07
Very elegant, here is a solution. Sorry for poor English Let the vertices of the tetrahedron be $V_1,V_2,V_3,V_4,$ $M_1,M_2,M_3,M_4$ are midpoint of $V_1V_4,V_1V_3,V_2V_3,V_2V_4.$ Call the surface $\alpha =M_1M_2M_3M_4,$ the idea is to find a plane perpendicular to $\alpha.$ [asy][asy] unitsize(2cm); pair V[]; pair V1,V2,V3,V4; pair M[]; pair M1,M2,M3,M4; V[1]=(0,0); V1=V[1]; V[2]=(-1,-4);V2=V[2]; V[3]=(1.5,-3.8);V3=V[3]; V[4]=(3,-2.5);V4=V[4]; M[1]=midpoint(V[1]--V[4]); M1=M[1]; M2=midpoint(V1--V3); M3=midpoint(V2--V3); M4=midpoint(V2--V4); path p1=V1--V2--V3--V4--cycle; path p2=M1--M2--M3--M4--cycle; filldraw(p2,red+white,blue+dashed+.75); draw(V2--V4,dashed); draw(p1^^V1--V3); label("$V_1$",V1, dir(V3--V1)); label("$V_2$",V2,-dir(V2--V1,V2--V3)); label("$V_3$",V3, dir(V1--V3)); label("$V_4$",V4,-dir(V4--V3,V4--V1)); label("$M_1$",M1,0.75*dir(V4--V1)*dir(-90)); label("$M_2$",M2, dir(M2--V1,M2--M3)); label("$M_3$",M3,dir(V3--V2)*dir(90)); label("$M_4$",M4,dir(M4--V3,M4--V4)); //label("$a$",V1--V2);// AoPS asy autosizes label("$a$",midpoint(V1--V2), dir(V2--V1)*dir(90)); label("$\alpha$", midpoint(M2--M3),dir(M2--M3)*dir(90)); //label("$b$", V3--V4);// AoPS asy autosizes label("$b$", midpoint(V4--V3), dir(V4--V3)*dir(90)); real gr=(sqrt(5)-1)/2; dot(p1^^p2,black+gr,Fill(red+white)); shipout(bbox(2mm,Fill(white))); [/asy][/asy] In this way, the projection turns out to be a trapezoid, and the height is a constant. Therefore we only need to calculate the sum of the projection length of $a=V_1V_2$ and $b=V_3V_4.$ Now the problem is only on 2-dimension space: For two given vectors $v_1,v_2,$ there exists two lines $\ell_1,\ell_2$ such that the ratio of sum of projection length is no less than $\sqrt 2.$ WLOG let $|v_1|\ge |v_2|,$ then let $\ell _1$ be perpendicular to $v_1$ so the sum is no bigger than $|v_2|.$ Let $\ell_2$ parellel to $v_1\pm v_2,$ we can get the sum is no less than $|v_1\pm v_2|.$ Now it is obvious because $|v_1+v_2|^2+|v_1-v_2|^2=2(|v_1|^2+|v_2|^2)\ge 4|v_2|^2,$ and we are done.$\Box$