Consider a convex quadrilateral, and the incircles of the triangles determined by one of its diagonals. Prove that the tangency points of the incircles with the diagonal are symmetrical with respect to the midpoint of the diagonal if and only if the line of the incenters passes through the crossing point of the diagonals. Dan Schwarz
Problem
Source: Stars of Mathematics 2008
Tags: geometry, incenter, geometric transformation, homothety, parallelogram, conics, ellipse
14.01.2009 17:58
$ ABCD$ is the convex quaddrilateral, $ (I), (J)$ are incircles of the $ \triangle DAB, \triangle BCD$ tangent to $ BD$ at $ U, V.$ The internal homothety center of $ (I), (J)$ is $ H \equiv IJ \cap BD.$ If $ \angle DAB = \angle BCD,$ either condition $ BU = DV$ or $ H \equiv IJ \cap BD \cap AC$ makes $ ABCD$ is a parallelogram and the proposition becomes trivial. Therefore, WLOG, let $ \angle DAB < \angle BCD$ and $ P \equiv AB \cap CD.$ Assume $ BU = DV.$ Then $ AB + BD - DA = CD + DB - BC$ or $ AB + BC = CD + DA,$ which means that the convex $ ABCD$ is tangential with an excircle $ (E)$ in the (smaller) angle $ \angle DAB.$ $ A$ is the external homothety center of $ (I), (E)$ and $ C$ the internal homothety center of $ (J), (E),$ so that the internal homothety center $ H$ of $ (I), (J)$ is on $ AC,$ therefore $ H \equiv IJ \cap BD \cap AC.$ Assume $ H \equiv IJ \cap BD \cap AC.$ Let $ (E)$ be the A-excircle of the $ \triangle DAP.$ The internal homothety center of $ (J), (E)$ is on their common internal tangent $ CD \equiv PD.$ $ A$ is the external homothety center of $ (I), (E)$ and $ H \in AC$ the internal homothety center of $ (I), (J)$ $ \Longrightarrow$ the internal homotherty center of $ (J), (E)$ is on $ AC$ $ \Longrightarrow$ it is identical with $ C \equiv CD \cap AC.$ But then the other tangent $ BC$ of $ (J)$ through $ C$ is also tangent of $ (E)$ and the convex $ ABCD$ is tangential with the excircle $ (E)$ in the angle $ \angle DAB.$ Consequently, $ AB + BC = CD + DA$ or $ AB + BD - DA = CD + DB - BC,$ which means that $ BU = DV.$
24.12.2011 07:14
analytical version on an ellipse with focuses $F_1,F_2$,there are two points $A,B$,the incenters of triangles $AF_jB$ are $I_j$(j=1,2),then $I_1I_2,AB,F_1F_2$ are concurrent.
26.12.2011 07:03
We first introduce a lemma : $ ABCD $ is a quadrilateral , there is a circle tangent to it whose centre is constructed by intersecting the internal angle bisectors of $ \angle A ~,~ \angle C$ and external angle bisectors of $ \angle B ~,~ \angle D $ if and only if $ AB + BC = CD + DA $ . The proof for only if part is easy , for the if part , construct points $ P,Q $ respectively on $ AB , AD $ away from $A$ such that $ BP = BC ~,~ DQ =DC$ . Then $ AP = AQ $ and therefore the bisectors intersect at the circumcentre of $ \Delta PCQ $ . Now , considering diagonal $BD$ , we just need to show that there is such a circle ( internal bisectors of $ \angle A ~,~ \angle C $ ) iff the concurrence . Let $ I_1 ~,~ I_2 $ be the incentres of $ \Delta ABD ~,~ \Delta BCD $ , $ X = I_1 I_2 \cap AC $ , $ Y = AI_1 \cap CI_2 $ . Be applying Menelaus theorem on $ \Delta I_1 I_2 Y $ and line $ AXC $ , $ \frac{I_2X}{I_1X} = \frac{AY}{AI_1}\cdot \frac{CI_2}{CY} = \frac{r_2}{r_1}\cdot \frac{d(Y,AB)}{d(Y,BC)} $ , where $ r_1 , r_2 $ are the inradii . Therefore , $ d(Y,AB) = d(Y,BC) $ iff $ \frac{I_2X}{I_1X} = \frac{r_2}{r_1} $ , at the same time $ BD $ cuts the segment $ I_1 I_2 $ at the ratio $ r_1 : r_2 $ , we see that what's next is trivial .
02.02.2012 07:51
here is my solution let the two triangles be $ABD$and $BCD$ .if the two tangency points are symmetical with respect to the midpoint of the diagonal,then we have $AB+BC=AD+DC$,letthe incenter of the triangle $ABD$ and $BCD$ be $I_{1},I_{2}$ respectively, then if $I_{1},I_{2}$ and the intersection of two diagonals are collinear. then we have $\frac{BI_{1}*BI_{2}*sinI_{1}BI_{2}}{DI_{1}*DI_{2}*sinI_{1}DI_{2}}=\frac{AB*BC*sinABC}{AD*DC*sinADC}$ hences to $tan\frac{\angle BDA}{2}tan\frac{\angle BDC}{2}=tan\frac{\angle ABD}{2}tan\frac{\angle DBC}{2}$ so $(AB+BD-AD)(BD+BC-DC)=(BD+DC-BC)(AD+BD-AB)$ so we get $AB+BC=AD+DC$