Let $ 0 < a_1 < a_2 < a_3 < ... < a_{10000} < 20000$ be integers such that $ gcd(a_i,a_j) < a_i, \forall i < j$ ; is $ 500 < a_1$ (always) true ? (own)
Problem
Source:
Tags: combinatorics unsolved, combinatorics
Akashnil
08.12.2008 08:22
Very nice problem paolo Here's my solution for other ppl to see:
Yes. It is true that $ a_1 > 500$.
Proof:
Let
$ X = \{a_i|0 < i\le 10000\}$
$ Y = \{x|10000\le x < 20000\text{ and }x\in \mathbb N\}$
Let For a number $ x < 20000$ there exists an unique non-negative integer $ t$ such that $ x\cdot 2^t\in Y$
Let $ f(x)$ denote the unique positive integer $ x\cdot 2^t$
For example $ f(12345) = 12345,f(4321) = 17284,f(700) = 11200,f(1) = 16384$ etc.
$ f(x) = f(y)\implies \frac {x}{y} = 2^k$ for some integer $ k$ (not necessarily positive) which implies one of $ x,y$ divides the other.
So $ f(x)\neq f(y)\ \forall\ x,y\in X\text{ and }x\neq y$
This is equivalent to saying that $ f$ is an injective map from $ X\to Y$
also $ |X| = |Y|\implies f$ is a bijective map from $ X\to Y$
(For a set $ S$, $ |S|$ denotes the number of elements of $ S$)
For some odd $ x\in (0,20000)$ there exists unique $ t$ such that $ x\cdot 2^t\in Y$. Then There exists unique $ u$ such that $ x\cdot 2^u\in X$
For some odd $ x\in (0,20000)$ denote $ g(x)$ that unique $ u$
If $ h(x) = x\cdot 2^{g(x)}$ then similarly it can be showed that $ h$ is a bijective map between the set of odd integers $ < 20000$ and $ X$.
We claim to show that $ x\cdot 2^{g(x)} > 500\ \forall \text{ odd }x\in (0,20000)$
For odd $ x,y\in (0,20000)$ such that $ y\neq 1$, if $ g(x)\le g(xy)$ then $ x\cdot 2^{g(x)}|xy\cdot 2^{g(xy)}$.
But both $ x\cdot 2^{g(x)},xy\cdot 2^{g(xy)}\in X$ and are distinct. Contradiction.
So we have that for all $ x,y\in (0,20000)$ such that $ y\neq 1$, $ g(x) > g(xy)$ or $ g(x)\ge g(xy) + 1$
$ g(1)\ge g(3) + 1\ge \cdots \ge g(3^2) + 2\ge \cdots g(3^9) + 9\ge 9$
(note that $ 3^9 < 20000$)
$ 1\cdot 2^{g(1)}\ge 512 > 500$
$ g(3)\ge g(3^2) + 1\ge \cdots \ge g(3^9) + 8\ge 8$
$ 3\cdot 2^{g(3)}\ge 768 > 500$
$ g(5)\ge g(5\cdot 3) + 1\ge g(5\cdot 3^2) + 2\ge \cdots \ge g(5\cdot 3^7) + 7\ge 7$
(note that $ 5\cdot 3^7 < 20000$)
$ 5\cdot 2^{g(5)}\ge 640 > 500$
$ g(7)\ge g(7\cdot 3) + 1\ge \cdots \ge g(7\cdot 3^7) + 7\ge 7$
(note that $ 7\cdot 3^7 < 20000$)
$ 7\cdot 2^{g(7)}\ge 896 > 500$
Suppose $ t$ is an arbitrary odd integer $ \ge 9$ and $ < 20000$
We need to show that $ t\cdot 2^{g(t)} > 500$
Let $ m$ be the unique non-negative integer such that $ 3^{m + 2}\le t < 3^{m + 3}$
$ t\cdot 3^{6 - m} < 3^{m + 3}\cdot 3^{6 - m} = 3^9 < 20000$
$ g(t)\ge g(t\cdot 3) + 1\ge \cdots \ge g(t\cdot 3^{6 - m}) + 6 - m\ge 6 - m$
$ t\cdot 2^{g(t)}\ge 3^{m + 2}\cdot 2^{6 - m} = 9\cdot 3^m2^{6 - m}\ge 9\cdot 2^m2^{6 - m} = 9\cdot 2^6 = 576 > 500$
$ QED$
giove
08.12.2008 16:47
Your solution is identical to mine