Consider a set $ A$ of positive integers such that the least element of $ A$ equals $ 1001$ and the product of all elements of $ A$ is a perfect square. What is the least possible value of the greatest element of $ A$?
Problem
Source: Baltic Way 2008, Problem 8
Tags: number theory unsolved, number theory
30.11.2008 20:36
is the answer 1287??
01.12.2008 18:05
No, the set $ \{1001, 1008, 1053, 1100 \}$ fullfils that condition but probably there is another optimal one. Another "small" set is $ \{1001, 1008, 1014, 1053, 1056 \}$
02.12.2008 07:20
mszew's example of $ \{1001, 1008, 1014, 1053, 1056\}$ is optimal. Since $ 1001 = 7 \cdot 11 \cdot 13$, $ A$ must contain another multiple of 7, another multiple of 11, and another multiple of 13. We list all multiple of 7, 11, and 13 between 1002 and 1056, and their prime factorizations: \begin{align*} 1001 &= 7 \cdot 11 \cdot 13, \\ 1008 &= 7 \cdot 2^4 \cdot 3^2, \\ 1015 &= 7 \cdot 5 \cdot 29, \\ 1022 &= 7 \cdot 2 \cdot 73, \\ 1029 &= 7^3 \cdot 3, \\ 1036 &= 7 \cdot 2^2 \cdot 37, \\ 1043 &= 7 \cdot 149, \\ 1050 &= 7 \cdot 2 \cdot 3 \cdot 5^2, \\ 1057 &= 7 \cdot 151, \\ 1012 &= 11 \cdot 2^2 \cdot 23, \\ 1023 &= 11 \cdot 3 \cdot 31, \\ 1034 &= 11 \cdot 2 \cdot 47, \\ 1045 &= 11 \cdot 5 \cdot 19, \\ 1056 &= 11 \cdot 2^5 \cdot 3, \\ 1014 &= 13^2 \cdot 2 \cdot 3, \\ 1027 &= 13 \cdot 79, \\ 1040 &= 13 \cdot 2^4 \cdot 5, \\ 1053 &= 13 \cdot 3^4. \end{align*} We see that no multiple of 11 smaller than 1056 will lead to a better bound on $ A$. For example, the number 1012 contains the prime factor 23, and no other number in the list above contains another prime factor of 23. Therefore, the bound of 1056 is optimal.
02.12.2008 21:54
How about $ \{1001,1008,1012,1035,1040\}$?
02.12.2008 22:23
nsato wrote: mszew's example of $ \{1001, 1008, 1014, 1053, 1056\}$ is optimal. Since $ 1001 = 7 \cdot 11 \cdot 13$, $ A$ must contain another multiple of 7, another multiple of 11, and another multiple of 13. We list all multiple of 7, 11, and 13 between 1002 and 1056, and their prime factorizations: \begin{align*} 1001 & = 7 \cdot 11 \cdot 13, \\ 1008 & = 7 \cdot 2^4 \cdot 3^2, \\ 1015 & = 7 \cdot 5 \cdot 29, \\ 1022 & = 7 \cdot 2 \cdot 73, \\ 1029 & = 7^3 \cdot 3, \\ 1036 & = 7 \cdot 2^2 \cdot 37, \\ 1043 & = 7 \cdot 149, \\ 1050 & = 7 \cdot 2 \cdot 3 \cdot 5^2, \\ 1057 & = 7 \cdot 151, \\ 1012 & = 11 \cdot 2^2 \cdot 23, \\ 1023 & = 11 \cdot 3 \cdot 31, \\ 1034 & = 11 \cdot 2 \cdot 47, \\ 1045 & = 11 \cdot 5 \cdot 19, \\ 1056 & = 11 \cdot 2^5 \cdot 3, \\ 1014 & = 13^2 \cdot 2 \cdot 3, \\ 1027 & = 13 \cdot 79, \\ 1040 & = 13 \cdot 2^4 \cdot 5, \\ 1053 & = 13 \cdot 3^4. \end{align*} We see that no multiple of 11 smaller than 1056 will lead to a better bound on $ A$. For example, the number 1012 contains the prime factor 23, and no other number in the list above contains another prime factor of 23. Therefore, the bound of 1056 is optimal. Who says that every number in the set must be a multiple of either 7, 11 or 13 ?
02.12.2008 22:43
The number should be 1040. We need another multiple of 13. $ 1014=2*3*13*13$ does not help. $ 1027=13*79$ will ask for another multiple of $ 79$, a number greater than 1040.
03.12.2008 02:33
Ok, thanks for the correction.