Let $\lambda$ be a line and let $M, N$ be two points on $\lambda$. Circles $\alpha$ and $\beta$ centred at $A$ and $B$ respectively are both tangent to $\lambda$ at $M$, with $A$ and $B$ being on opposite sides of $\lambda$. Circles $\gamma$ and $\delta$ centred at $C$ and $D$ respectively are both tangent to $\lambda$ at $N$, with $C$ and $D$ being on opposite sides of $\lambda$. Moreover $A$ and $C$ are on the same side of $\lambda$. Prove that if there exists a circle tangent to all circles $\alpha, \beta, \gamma, \delta$ containing all of them in its interior, then the lines $AC, BD$ and $\lambda$ are either concurrent or parallel.