In a convex cyclic hexagon $ABCDEF$, $BC=EF$ and $CD=AF$. Diagonals $AC$ and $BF$ intersect at point $Q,$ and diagonals $EC$ and $DF$ intersect at point $P.$ Points $R$ and $S$ are marked on the segments $DF$ and $BF$ respectively so that $FR=PD$ and $BQ=FS.$ The segments $RQ$ and $PS$ intersect at point $T.$ Prove that the line $TC$ bisects the diagonal $DB$.
Problem
Source: IZHO 2021, P2
Tags: geometry, hexagon, izho
08.01.2021 19:58
ignore for now @below, urgh, it's actually quite clear, $FC$ can be any line
08.01.2021 20:02
Nofancyname wrote: Have I made a typo or ? ...so by easy similar (in fact congruent) triangles containing these sides (also using the parallelogram) , we have $FC$ is a diameter It would be good to show these "easy" arguments, since I don't believe your conclusion is true. $FC$ definitely does not have to be a diameter...
08.01.2021 20:20
09.01.2021 03:21
Lemma: Given two parallelograms $ABDC$ and $AEFG$, where $E$ is on $BD$ and $C$ is on $FG$, let $H$ be the point of intersection between $EF$ and $CD$. Show that $AH$ bisects the segment $BG$. Proof (Sketch): Use complex numbers and set $A$ and $C$ to be real numbers and let $B,E$ and $D$ be points of the form $x+i$, and set $H$ to be a random point on $CD$. Now we get $F$ easily and compute $G=A+F-E$, then compute the midpoint to get that it is on $AH$.
$\color{red}\rule{25cm}{0.5pt}$ Now back to the problem. Using the lemma we have that $CT$ bisects $BD$, since both $CQRD$ and $CBSP$ are parallelograms.
09.01.2021 06:11
Lemma: Given two parallelograms $ABDC$ and $AEFG$, where $E$ is on $BD$ and $C$ is on $FG$, let $H$ be the point of intersection between $EF$ and $CD$. Show that $AH$ bisects the segment $BG$. Proof (Sketch): Use complex numbers and set $A$ and $C$ to be real numbers and let $B,E$ and $D$ be points of the form $x+i$, and set $H$ to be a random point on $CD$. Now we get $F$ easily and compute $G=A+F-E$, then compute the midpoint to get that it is on $AH$.
$\color{red}\rule{25cm}{0.5pt}$ Now back to the problem. Using the lemma we have that $CT$ bisects $BD$, since both $CQRD$ and $CBSP$ are parallelograms.[/quote] Yeah this is what i am looking for during contest. İf we divide problem to two parts, then part 1 will be finding these paralellograms, part to will be provong lemma. İ think lemma's proof is little bit hard, i didn't find anything better.
09.01.2021 06:36
Easy angle chasing gives $FPCQ$ is a parallelogram, Since $FS = BQ$, clearly $BS = PC$ and $BS // PC$ which means $BSPC$ is a parallelogram. Similarly $DRQC$ is also a parallelogram. $\angle TQC = \angle FDC$ and $\angle TPC = \angle FBC$. Since $FBCD$ is cyclic, $\angle FDC + \angle FBC = 180^{\circ}$. So, $\angle TQC + \angle TPC = 180^{\circ}$, and we get that $TQCP$ is also cyclic. $FPCQ$ and $BSPC$ are both parallelograms, clearly $\angle QCB = \angle FPC$. Since $TQCP$ is cyclic, $\angle TCQ = \angle TPQ$ and hence, adding both of these, $\angle TCB = \angle RPQ$. Similarly $\angle TCD = \angle PQS$. We finish with some law of sinuses Law of sinus on $\triangle RQP$ and $\triangle SPQ$, $\frac{sin \angle PRQ}{sin \angle RPQ} = \frac{PQ}{RQ}$ and $\frac{sin \angle PSQ}{sin \angle PQS} = \frac{PQ}{PS}$. Divide the first by the second to get $$\frac{sin \angle PQS}{sin \angle RPQ} = \frac{PS}{RQ}$$$$\frac{sin\angle TCD}{sin \angle TCB} = \frac{BC}{DC}$$note that by easy angle chasing we can get $\angle PRQ = 180^{\circ} - \angle PSQ$ which means $sin \angle PRQ = sin \angle PSQ$ which is why it can be eliminated. Let $TC$ intersect $BD$ at $M$. By law of sinus on $\triangle MBC$ and $\triangle MDC$ (well known): $$\frac{MD}{MB} = \frac{sin \angle TCD}{sin \angle TCB} \times \frac{sin \angle DBC}{sin \angle BDC}$$ Since $\frac{sin\angle TCD}{sin \angle TCB} = \frac{BC}{DC}$ and by law of sinus on $\triangle BDC$, $\frac{sin \angle DBC}{sin \angle BDC} = \frac{DC}{BC}$. It follows that $\frac{MD}{MB} = 1$ and we are done.
10.01.2021 17:03
Firstly, since $AF = CD$, we get that, $\angle ABF = \angle CED = \alpha$ . In the same way, we get, that $\angle BAC = \angle FDE = \beta$. $1)\angle AQF = \angle ABQ + \angle BAQ = \alpha + \beta; \angle FPE = \angle PED + \angle PDE = \alpha + \beta .$ $2)\angle BFD = \angle BFC + \angle DFC = \angle BAC + \angle CED = \alpha + \beta .$ So, $\angle AQF = \angle QFP = \angle FPE .$ That means, that $QC || FP$, $QF || PC$ and $FQCP - parallelogram(*) .$ $(*)\implies QC=FP=RD (FR=PD) $, so we get, that $QC=RD$ and $QC||RD \implies QRDC$- parallelogram and $QR||CD(1)$. In the same way, we get, that $SP||CB(2)$. Let $TP\cap CD=X$ and $TQ\cap CB=Y$. $(1),(2)\implies TYCX$- parallelogram $\implies 180^{\circ} - \angle SFR = \angle BCD = \angle QTP = \angle STR \implies SFRT$- сyclic quadrilateral(**). (**)$\implies \angle FSX = \angle FST = \angle TRD = \angle FDX \implies \angle FSX = \angle FDX \implies FSDX$- сyclic quadrilateral and $\triangle FSP \sim \triangle XDP(3) .$ Let $FS=BQ=x, FR=DP=y, CD=a, BC=SP=b$ $$(3)\implies \frac{DX}{x}=\frac{y}{b} \implies xy=DX\cdot b.$$Also, $BY\cdot a = xy.$ As we already know, $TYCX$- parallelogram and $TC$ bisects the diogonal $XY$ . To prove the problem statement it is enough to prove, that $BD||XY\Leftrightarrow \frac{CD}{DX}=\frac{CB}{BY}\Leftrightarrow DX\cdot b=BY\cdot a$. Both of these expressions are equal to $xy$ $\blacksquare .$
Attachments:

10.01.2021 22:49
whoa, this problem is so cool. I think my solution is pretty new, so I won't hide it. First note that since $BCD$ and $EFA$ are rotations, $BF // CE$. Thus $CQFP$ is a parallelogram. Also note that this gives $\angle{BQC} = \angle{QCP} = \angle{CPD}$, and we also had since the beginning that $\angle{CBF} = 180^\circ - \angle{CDF}$. This gives us that: \begin{align*} \dfrac{CQ}{CB} &= \dfrac{\sin{\angle{CBF}}}{\sin{\angle{CQB}}} \\ &= \dfrac{\sin{\angle{CDF}}}{\sin{\angle{CPD}}} \\ &= \dfrac{CP}{CD} \end{align*}Now we'll look at $S$ and $R$. Note that since $CQ = FP = RD$, we have that $CD // QR$. We also have by ratios that: \begin{align*} \dfrac{BC}{CD} &= \dfrac{CQ}{CP} \\ &= \dfrac{FP}{FQ} \\ &= \dfrac{DR}{BS} \end{align*}Thus, since $\angle{CBF} + \angle{CDF} = 180^\circ$, and $BC \cdot BS = DC \cdot DR$, we now have by the sine area formula that $BCS$ and $DCR$ have the same area. But since $ST$ and $BC$ are parallel, and $RT$ and $CD$ are parallel, we have that $BCT$ and $DCT$ also share this equal area. This is now enough to prove that $CT$ bisects $BD$, and thus we are done!
11.01.2021 03:00
What does Izho refer to?
11.01.2021 12:15
Adam_oly wrote: What does Izho refer to? International Zhautykov Olympiad
14.01.2021 11:09
A quick sketch (haven't fully read the above Solutions); but post $\#6$ mentioned something about projective transformations --- here is a $``\text{one-paragraph}"$ Solution using a collinearity bomb. $\color{green} \rule{25cm}{4pt}$ $\color{green} \textbf{Easy everytime (Just Kidding).}$ Set reference triangle $\triangle BDF$. Now let the midpoints of $BD, BF$ and $FD$ be $M, M_1$ and $M_2$. Reflect $C$ towards $M$ to get $C'$. So it's now left to prove $C,C',T$ collinear. By easy midpoint analysis we get that $CQ \parallel MM_1 \parallel C'S$ and $CP \parallel MM_2 \parallel C'R$. However, Pappus on the lines $l_1 = BF$, $l_2 = DF$ with points $S,Q,P_{\infty} \in \overline{BF}$ and $R,P,P_{\infty} \in \overline{DF}$ yields the desired result. $\blacksquare$ $\blacksquare$ $\blacksquare$ Note: You could also proof the Pappus using Cartesian coordinates (see attachment) without much difficulty.
Attachments:

2 INA 11-2-5.pdf (412kb)
19.01.2021 10:23
Note that $AQRF$, $FSPE$ are cyclic. Also, $FRTS$ is cyclic. Let $K=(FRTS)\cap (ABCDEF)$. It is easy to show that $K$ lies on $CT$: $$\measuredangle FKT=\measuredangle FST=\measuredangle FSP=\measuredangle FEP=\measuredangle FEC=\measuredangle FKC.$$ Let $M=CT\cap BD$. \begin{align*} \frac{MD}{MB}&=\frac{\frac{KM\cdot \sin{MKD}}{\sin{KDM}}}{\frac{KM\cdot \sin{MKB}}{\sin{KBM}}} \\&=\frac{\sin{MKD}\cdot \sin{KBM}}{\sin{MKB}\cdot \sin{KDM}} \\&=\frac{\sin{CBD}\cdot \sin{KSR}}{\sin{CDB}\cdot \sin{KRS}} \\&=\frac{\sin{CBD}\cdot KR}{\sin{CDB}\cdot KS} \\&=\frac{\sin{CBD}\cdot RD}{\sin{CDB}\cdot BS} \\&=\frac{\sin{CBD}\cdot FP}{\sin{CDB}\cdot FQ} \\&=\frac{CD\cdot FP}{BC\cdot FQ} \\&=\frac{AF\cdot FP}{EF\cdot FQ} \\&=\frac{BC\cdot FP}{EF\cdot CQ} \\&=\frac{EF\cdot FP}{EF\cdot FP} \\&=1 \end{align*}Done.
15.11.2021 09:11
It's very cool indeed! Obiviously,$FQCP$,$SPCB$,$QCDR$ are parallelograms and let $O$,$O_1$ and $O_2$ be their centers,respectively. And let $K$ be midpoint of $BD$.Homothety sends $OO_1O_2$ to $FSR$. So this homothey sends $K$ to $K'$,where $K'$ is a point that $SFRK'$ is parallelogram. Since $K'-K-C$ are collinear, we need to prove that $T-K'-C$ are collinear. [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -2.7906067046360783, xmax = 3.6678522574438484, ymin = -2.291061507077214, ymax = 2.0145778009760686; /* image dimensions */ pen zzttqq = rgb(0.6,0.2,0); draw((0.2339067970332541,1.4400523104842964)--(-1.8660829268332264,-0.3231466086111431)--(0.2537180208433152,-1.2938965753041378)--(2.3537077447097956,0.4693023437913016)--cycle, linewidth(0.6) + zzttqq); draw((0.7770587424846903,0.5208035627375326)--(0.2438124089382846,0.07307786759007925)--(0.666701218933251,-0.12058149399640053)--(1.1999475524796568,0.32714420115105286)--cycle, linewidth(0.6) + blue); /* draw figures */ draw((-1.8660829268332264,-0.3231466086111431)--(0.2339067970332541,1.4400523104842964), linewidth(0.6)); draw((0.2339067970332541,1.4400523104842964)--(2.3537077447097956,0.4693023437913016), linewidth(0.6)); draw((0.2438124089382846,0.07307786759007925)--(0.7770587424846903,0.5208035627375326), linewidth(0.6)); draw((0.2438124089382846,0.07307786759007925)--(0.666701218933251,-0.12058149399640053), linewidth(0.6)); draw((-0.799590259740415,0.5723047816837636)--(0.2537180208433152,-1.2938965753041378), linewidth(0.6)); draw((-1.0203053068432937,-0.7104653317841026)--(0.2339067970332541,1.4400523104842964), linewidth(0.6)); draw((-1.8660829268332264,-0.3231466086111431)--(0.2537180208433152,-1.2938965753041378), linewidth(0.6)); draw((0.2537180208433152,-1.2938965753041378)--(2.3537077447097956,0.4693023437913016), linewidth(0.6)); draw((0.666701218933251,-0.12058149399640053)--(1.1999475524796568,0.32714420115105286), linewidth(0.6)); draw((1.1999475524796568,0.32714420115105286)--(0.7770587424846903,0.5208035627375326), linewidth(0.6)); draw((0.2339067970332541,1.4400523104842964)--(-1.8660829268332264,-0.3231466086111431), linewidth(0.6) + zzttqq); draw((-1.8660829268332264,-0.3231466086111431)--(0.2537180208433152,-1.2938965753041378), linewidth(0.6) + zzttqq); draw((0.2537180208433152,-1.2938965753041378)--(2.3537077447097956,0.4693023437913016), linewidth(0.6) + zzttqq); draw((2.3537077447097956,0.4693023437913016)--(0.2339067970332541,1.4400523104842964), linewidth(0.6) + zzttqq); draw((0.7770587424846903,0.5208035627375326)--(0.2438124089382846,0.07307786759007925), linewidth(0.6) + blue); draw((0.2438124089382846,0.07307786759007925)--(0.666701218933251,-0.12058149399640053), linewidth(0.6) + blue); draw((0.666701218933251,-0.12058149399640053)--(1.1999475524796568,0.32714420115105286), linewidth(0.6) + blue); draw((1.1999475524796568,0.32714420115105286)--(0.7770587424846903,0.5208035627375326), linewidth(0.6) + blue); draw((-0.799590259740415,0.5723047816837636)--(0.7770587424846903,0.5208035627375326), linewidth(0.6)); draw((-0.009972181836955326,0.5861554981290483)--(-0.01255933541876902,0.5069528462922479), linewidth(0.6)); draw((0.7770587424846903,0.5208035627375326)--(2.3537077447097956,0.4693023437913016), linewidth(0.6)); draw((1.5666768203881503,0.5346542791828173)--(1.5640896668063367,0.45545162734601685), linewidth(0.6)); draw((2.3537077447097956,0.4693023437913016)--(0.666701218933251,-0.12058149399640053), linewidth(0.6)); draw((1.5544508013755147,0.14785690569018994)--(1.5282946725976174,0.2226607180862927), linewidth(0.6)); draw((1.5232825462104718,0.13695851869939932)--(1.4971264174325745,0.21176233109550208), linewidth(0.6)); draw((1.4921142910454286,0.1260601317086087)--(1.4659581622675315,0.20086394410471148), linewidth(0.6)); draw((0.666701218933251,-0.12058149399640053)--(-1.0203053068432937,-0.7104653317841026), linewidth(0.6)); draw((-0.13255572440102975,-0.44202693209751254)--(-0.15871185317892697,-0.36722311970140975), linewidth(0.6)); draw((-0.1637239795660728,-0.4529253190883032)--(-0.18988010834396998,-0.3781215066922004), linewidth(0.6)); draw((-0.1948922347311158,-0.4638237060790938)--(-0.22104836350901302,-0.389019893682991), linewidth(0.6)); draw((-1.8660829268332264,-0.3231466086111431)--(0.2438124089382846,0.07307786759007925), linewidth(0.6)); draw((-0.8346739809992716,-0.08913972380888627)--(-0.8200479789476672,-0.16702318473367916), linewidth(0.6)); draw((-0.8022225389472745,-0.08304555628738468)--(-0.7875965368956701,-0.1609290172121776), linewidth(0.6)); draw((0.2438124089382846,0.07307786759007925)--(2.3537077447097956,0.4693023437913016), linewidth(0.6)); draw((1.2752213547722389,0.30708475239233607)--(1.289847356823843,0.22920129146754314), linewidth(0.6)); draw((1.3076727968242365,0.3131789199138377)--(1.322298798875841,0.23529545898904475), linewidth(0.6)); draw((-0.799590259740415,0.5723047816837636)--(0.046187360249517764,0.1849860585108041), linewidth(0.6)); draw((0.046187360249517764,0.1849860585108041)--(-1.0203053068432937,-0.7104653317841026), linewidth(0.6)); draw((-0.5402032054908811,0.11273517461933438)--(2.3537077447097956,0.4693023437913016), linewidth(0.6) + linetype("2 2")); /* dots and labels */ dot((-1.8660829268332264,-0.3231466086111431),dotstyle); label("$F$", (-2.1,-0.4155989863914283), NE * labelscalefactor); dot((0.2339067970332541,1.4400523104842964),dotstyle); label("$Q$", (0.1744731256030702,1.5391084295346018), NE * labelscalefactor); dot((2.3537077447097956,0.4693023437913016),dotstyle); label("$C$", (2.399933933599937,0.37684996601101634), NE * labelscalefactor); dot((0.2537180208433152,-1.2938965753041378),linewidth(4pt) + dotstyle); label("$P$", (0.22069931449321284,-1.439178883244586), NE * labelscalefactor); dot((-0.799590259740415,0.5723047816837636),dotstyle); label("$S$", (-0.9217479252203121,0.6145846517317498), NE * labelscalefactor); dot((-1.0203053068432937,-0.7104653317841026),dotstyle); label("$R$", (-1.133067645860964,-0.9316346864027118), NE * labelscalefactor); dot((0.7770587424846903,0.5208035627375326),linewidth(4pt) + dotstyle); label("$O_1$", (0.7489986160948429,0.6079809104617294), NE * labelscalefactor); dot((0.666701218933251,-0.12058149399640053),linewidth(4pt) + dotstyle); label("$O_2$", (0.6367350145044965,-0.250505454640919), NE * labelscalefactor); dot((0.2438124089382846,0.07307786759007925),linewidth(4pt) + dotstyle); label("$O$", (0.16126564306302946,-0.08541192289040969), NE * labelscalefactor); dot((1.1999475524796568,0.32714420115105286),linewidth(4pt) + dotstyle); label("$K$", (1.22446798753631,0.37684996601101634), NE * labelscalefactor); dot((-0.5402032054908811,0.11273517461933438),linewidth(4pt) + dotstyle); label("$T$", (-0.6972207220396194,0.08628535013011998), NE * labelscalefactor); dot((0.046187360249517764,0.1849860585108041),linewidth(4pt) + dotstyle); label("$K'$", (0.07541700655276458,0.23817139934058854), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy] So the problem turned to such a simple Problem: Let $ABCD$ be parallelogram. $E$ and $F$ are on segments $AB$ and $AD$,respectively. Let $G$ be a point that $AEGF$ is parallelogram and $H=DE\cap BF$. Prove that $H-G-C$ aree collinear. Proof: Let line $GC$ meets $AD$ and $AB$ at $K$, $R$,respectively. And let $BF\cap CG=H'$. We'll prove that $H=H'$. [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -2.7906067046360783, xmax = 4.169736593965397, ymin = -2.2580428007271123, ymax = 2.0475965073261704; /* image dimensions */ /* draw figures */ draw((-0.7038244633096398,-0.712767343542345)--(2.314085297089672,-0.7259748260823858), linewidth(0.6)); draw((2.314085297089672,-0.7259748260823858)--(2.545216241540385,1.0042053866629517), linewidth(0.6)); draw((-0.5505267666391829,0.4347754143907897)--(2.314085297089672,-0.7259748260823858), linewidth(0.6)); draw((-2.2405340478992426,-0.7060421374828721)--(2.545216241540385,1.0042053866629517), linewidth(0.6)); draw((2.545216241540385,1.0042053866629517)--(-0.4726935188589269,1.0174128692029927), linewidth(0.6)); draw((-0.4726935188589269,1.0174128692029927)--(-0.7038244633096398,-0.712767343542345), linewidth(0.6)); draw((-0.5505267666391829,0.4347754143907897)--(0.9336168558431674,0.4282802563055278), linewidth(0.6)); draw((0.9336168558431674,0.4282802563055278)--(0.7803191591727106,-0.719262501627607), linewidth(0.6)); draw((-2.2405340478992426,-0.7060421374828721)--(-0.7038244633096398,-0.712767343542345), linewidth(0.6)); /* dots and labels */ dot((-0.7038244633096398,-0.712767343542345),dotstyle); label("$A$", (-0.7764656172798639,-0.891257134022834), NE * labelscalefactor); dot((2.314085297089672,-0.7259748260823858),dotstyle); label("$B$", (2.333896520899733,-0.8580496514827932), NE * labelscalefactor); dot((2.545216241540385,1.0042053866629517),dotstyle); label("$C$", (2.5716312066204665,1.0702427993631554), NE * labelscalefactor); dot((-0.4726935188589269,1.0174128692029927),linewidth(4pt) + dotstyle); label("$D$", (-0.5981646029893137,1.0570353168231148), NE * labelscalefactor); dot((0.7803191591727106,-0.719262501627607),dotstyle); label("$E$", (0.7556023573648633,-0.8910683578328951), NE * labelscalefactor); dot((-0.5505267666391829,0.4347754143907897),dotstyle); label("$F$", (-0.7575982744194971,0.4428873787112201), NE * labelscalefactor); dot((0.9336168558431674,0.4282802563055278),linewidth(4pt) + dotstyle); label("$G$", (0.9140921478453523,0.5023210501414034), NE * labelscalefactor); dot((0.1535074450314071,0.14949843366264762),linewidth(4pt) + dotstyle); label("$H'$", (0.12824693671292758,0.2249639168005478), NE * labelscalefactor); dot((-2.2405340478992426,-0.7060421374828721),linewidth(4pt) + dotstyle); label("$R$", (-2.361363522084754,-0.8982384276727322), NE * labelscalefactor); dot((-0.6258418459426287,-0.12901175068071835),linewidth(4pt) + dotstyle); label("$K$", (-0.8632581347398231,-0.10522314670047081), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy] Now,let's do lenght chase. Let $DF=a$,$FA=b$,$FG=AE=c$,$EB=d$. Since $EG||DC$ we have $\frac{c+d}{c}=\frac{a+FK}{FK}$ $\implies$ $FK=\frac{ac}{d}$ $\implies$ $KA=b-\frac{ac}{d}$. Since $FG||RA$ we get $\frac{c}{RA}=\frac{\frac{ac}{d}}{b-\frac{ac}{d}}$ $\implies$ $RA=\frac{bd}{a}-c$. Since $FG||RB$ we have $\frac{FH'}{H'B}=\frac{c}{\frac{bd}{a}+d}=\frac{ac}{d(a+b)}$. $\frac{DF}{DA}\cdot \frac{AE}{EB}\cdot \frac{BH'}{H'F}=\frac{a}{a+b}\cdot \frac{c}{d}\cdot \frac{d(a+b)}{ac}=1$. From $\text{Menelaus}$ we get $D-H'-E$ are collinear. $\implies$ $H'=H$. So we are done!
05.12.2021 04:16
Here is an extremely quick natural solution without adding any additional points in the diagram! The condition is equivalent to $S_{TDC} = S_{TBC}$. From $CD = FA$ and $BC = EF$ we get the isosceles trapezoids $ACDF$ and $CEFB$; in particular $CPFQ$ becomes a parallelogram and from $SB = FQ = CP$ and $DR = PF = CQ$ we also get $CDRQ$ and $BCPS$ as parallelograms. Hence $S_{TDC} = S_{QDC} = S_{QPC} = S_{BPC} = S_{BTC}$, as desired!
11.05.2024 21:19
Equal lengths induce parallel lines in circles, with $AC \parallel FD$ and $BF \parallel CE$ giving parallelogram $PFQC$. Notice $BS$ is just a translation of $QF$ along line $BF$, so we also get $PSBC$ is a parallelogram. Similarily, along line $DF$, we find $QCDR$ is a parallelogram. Moreover, each of these three parallograms have the same area, and hence $[TBC] = [TCD]$ is simply half of this mutual area. This is sufficient to showing $T$ lies on the $C$-median of $\triangle BCD$. $\blacksquare$