Let $\triangle ABC$ be a triangle with altitudes $AD,BE,CF$. Let the lines $AD$ and $EF$ meet at $P$, let the tangent to the circumcircle of $\triangle ADC$ at $D$ meet the line $AB$ at $X$, and let the tangent to the circumcircle of $\triangle ADB$ at $D$ meet the line $AC$ at $Y$. Prove that the line $XY$ passes through the midpoint of $DP$.
Problem
Source: 2020 Thailand Mathematical Olympiad P4
Tags: geometry
28.12.2020 10:43
Note that $(XFPD)$ and $(PYDE)$ are cyclic.Hence $$\angle{XDP}=\angle{AFE}=\angle{BFD}=\angle{XFD}=\angle{XPD}$$so $XP=XD$ and similarly $YP=YD$ thus $XY$ is the perpendicular bisector of $PD$ and we are done.$\square$
29.12.2020 02:46
[asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(9cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -35.98168636001514, xmax = 50.44588353158434, ymin = -25.740932105039025, ymax = 28.262176925267873; /* image dimensions */ /* draw figures */ draw(circle((7.541241400347624,-0.4890071928282668), 12.798388035524882), linewidth(0.8) + red); draw((7.611984442028657,12.309185325254907)--(2.4480980517865234,-3.571153466242332), linewidth(0.8) + blue); draw((7.611984442028657,12.309185325254907)--(-4.265062779060309,-5.429646618161914), linewidth(0.8) + blue); draw((-4.265062779060309,-5.429646618161914)--(14.183659189513431,-11.428706558991856), linewidth(0.8) + blue); draw((14.183659189513431,-11.428706558991856)--(7.611984442028657,12.309185325254907), linewidth(0.8) + blue); draw((1.2595931164031204,-7.226125633120309)--(2.4480980517865234,-3.571153466242332), linewidth(0.8) + blue); draw(circle((1.6734608314841721,3.4397693535464975), 10.67392160136988), linewidth(0.8) + red); draw(circle((10.89782181577104,0.4402393831315239), 12.315380831453378), linewidth(0.8) + red); draw((-2.393146132622136,-2.633866304660168)--(13.147911235851073,-7.687426917485401), linewidth(0.8) + blue); draw((-1.327923844358364,-1.0429153888179326)--(11.327789879645724,-1.1128708674697294), linewidth(0.8) + blue); draw((-2.393146132622136,-2.633866304660168)--(1.2595931164031204,-7.226125633120309), linewidth(0.8) + blue); draw((1.2595931164031204,-7.226125633120309)--(13.147911235851073,-7.687426917485401), linewidth(0.8) + blue); draw((2.4480980517865234,-3.571153466242332)--(11.327789879645724,-1.1128708674697294), linewidth(0.8) + blue); draw((-1.327923844358364,-1.0429153888179326)--(2.4480980517865234,-3.571153466242332), linewidth(0.8) + blue); draw((2.4480980517865234,-3.571153466242332)--(-4.265062779060309,-5.429646618161914), linewidth(0.8) + blue); draw((-1.327923844358364,-1.0429153888179326)--(1.2595931164031204,-7.226125633120309), linewidth(0.8) + blue); draw((2.4480980517865234,-3.571153466242332)--(14.183659189513431,-11.428706558991856), linewidth(0.8) + blue); draw((11.327789879645724,-1.1128708674697294)--(1.2595931164031204,-7.226125633120309), linewidth(0.8) + blue); /* dots and labels */ dot((7.611984442028657,12.309185325254907),dotstyle); label("$A$", (7.853473271279759,12.897275611205659), NE * labelscalefactor); dot((-4.265062779060309,-5.429646618161914),dotstyle); label("$B$", (-4.06562296867285,-4.840147229292631), NE * labelscalefactor); dot((14.183659189513431,-11.428706558991856),dotstyle); label("$C$", (14.40615177286508,-10.884428260927399), NE * labelscalefactor); dot((2.4480980517865234,-3.571153466242332),linewidth(4pt) + dotstyle); label("$H$", (2.6565213562293324,-3.145488996124005), NE * labelscalefactor); dot((11.327789879645724,-1.1128708674697294),linewidth(4pt) + dotstyle); label("$E$", (11.581721384250717,-0.6599902541433528), NE * labelscalefactor); dot((-1.327923844358364,-1.0429153888179326),linewidth(4pt) + dotstyle); label("$F$", (-1.1282153645139128,-0.6035016463710652), NE * labelscalefactor); dot((1.2595931164031204,-7.226125633120309),linewidth(4pt) + dotstyle); label("$D$", (1.4702605930113004,-6.760759893550408), NE * labelscalefactor); dot((-2.393146132622136,-2.633866304660168),linewidth(4pt) + dotstyle); label("$X$", (-2.1450103044150834,-2.1851826639951164), NE * labelscalefactor); dot((13.147911235851073,-7.687426917485401),linewidth(4pt) + dotstyle); label("$Y$", (13.389356832963909,-7.212668755728709), NE * labelscalefactor); dot((3.26196741799112,-1.0682863830755183),linewidth(4pt) + dotstyle); label("$P$", (3.503850472813641,-0.6035016463710652), NE * labelscalefactor); dot((2.260780267197122,-4.147206008097908),linewidth(4pt) + dotstyle); label("$G$", (1.1313289463775769,-5.122590268154069), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy] Not as nice as Pluto1708's solution, but still worthy of posting $\color{black}\rule{25cm}{1pt}$ Since we have $DX$ and $DY$ are tangents to their respected circles we must have that: $$\angle XDY = \angle XDA + \angle YDA = \angle DCA + \angle DBA = \angle B + \angle C = 180 - \angle A$$this in turn implies that $(AXDY)$ is cyclic. In turn this implies that $\angle YXA = \angle YDA = \angle DBA = \angle CBA$, from which is obvious that $XY \parallel BC$. This implies that there exists a homothety centered at $A$ which takes $B$ to $X$, $C$ to $Y$, since $X$ is on $AB$ and $Y$ is on $AC$. Let $G$ be the point of intersection between $XY$ and the A-altitude of $ABC$. To show that $GP=GD$ is the equivalent of proving that $P$ is the orthocenter of $AXY$, since of the reflected orthocenter lemma. Let the homothetic coefficient be denote with $k$, and we have that: $$k = \frac{AB}{AX} = \frac{AX+XB}{AX} = 1+ \frac{XB}{AX}$$to calculate $k$ we just find expressions for $XB$ and $AX$. $\color{red}\rule{25cm}{1pt}$ Calculation for $XB$ Notice the angles of $BXD$, they are easily calculated and we get that $\angle BDX=90-\angle C$, $\angle DBX = \angle B$, this implies that $\angle BXD = 90-\angle B+\angle C$. From the Law Of Sines on $BXD$ we have that: $$\frac{BX}{\sin 90 -\angle C}=\frac{BD}{\sin 90 - \angle B + \angle C} \implies BX=\frac{\cos \angle C}{\cos \angle B - \angle C}BD$$$\color{red}\rule{25cm}{1pt}$ Calculation for $AX$ Notice the angles of $AXD$ they are also easily calculated they are $\angle XAD = 90-\angle B$, $\angle XDA = \angle C$, this implies that $\angle DXA = 90-\angle C+\angle B$. Now we apply the Law Of Sines of $AXD$ and $BXD$ to get that: $$AX = \frac{\sin \angle C}{\cos \angle B} DX = \frac{\sin \angle C \sin \angle B}{\cos \angle B \cos \angle B - \angle C} BD$$$\color{red}\rule{25cm}{1pt}$ From our calculations we have that: $$k=1+\text{ctg} (\angle C) \text{ ctg}(\angle B)$$ Now we are going to show that $\frac{AH}{AP} = k$ $\color{red}\rule{25cm}{1pt}$ Calculation for $AH$ We have from the Law Of Sines on $AHB$ that: $$AH = \frac{\cos \angle A}{\sin \angle C} AB$$$\color{red}\rule{25cm}{1pt}$ Calculation for $AP$ From the Law Of Sines on $APE$ and $AEB$, we have that: $$AP=\frac{\sin \angle B}{\cos \angle B -\angle C}AE=\frac{\sin \angle B \cos \angle A}{\cos \angle B -\angle C}AB$$$\color{red}\rule{25cm}{1pt}$ Thus when we now plug in what we indeed have that $\frac{AH}{AP}=k$, thus we have that $P$ is the orthocenter of $AXY$ and thus we have that $GP=GD$
30.12.2020 13:20
[asy][asy]/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(12cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = 2.994, xmax = 23.718, ymin = -10.99, ymax = 6.412; /* image dimensions */ pen qqwuqq = rgb(0.,0.39215686274509803,0.); pen wwqqzz = rgb(0.4,0.,0.6); pen ffqqff = rgb(1.,0.,1.); draw((11.559634549789402,-3.935866397786168)--(11.87076046643414,-3.9366812548118055)--(11.871575323459778,-3.6255553381670684)--(11.56044940681504,-3.6247404811414308)--cycle); /* draw figures */ draw(circle((14.5,-3.1), 7.529276193632426), blue); draw((11.58,3.84)--(7.695508204334062,-6.323180324262812), red); draw((7.695508204334062,-6.323180324262812)--(21.28751516505823,-6.358778587769432), red); draw((21.28751516505823,-6.358778587769432)--(11.58,3.84), red); draw(circle((9.637754102167028,-1.2415901621314052), 5.440117434717719), qqwuqq); draw(circle((16.433757582529125,-1.2593892938847167), 7.040080527987236), wwqqzz); draw((9.416145277196781,-1.8213958530929832)--(21.28751516505823,-6.358778587769432)); draw((7.695508204334062,-6.323180324262812)--(14.80896445898262,0.4476289323269972)); draw((11.58,3.84)--(11.553355571799969,-6.3332842528108335)); draw((8.729718573158161,-3.617326631043795)--(11.553355571799969,-6.3332842528108335), ffqqff); draw((11.553355571799969,-6.3332842528108335)--(18.702978147777895,-3.643447182878647), ffqqff); draw((9.416145277196781,-1.8213958530929832)--(14.80896445898262,0.4476289323269972)); draw((8.729718573158161,-3.617326631043795)--(18.702978147777895,-3.643447182878647)); draw((9.416145277196781,-1.8213958530929832)--(11.553355571799969,-6.3332842528108335)); draw((11.553355571799969,-6.3332842528108335)--(14.80896445898262,0.4476289323269972)); draw((8.729718573158161,-3.617326631043795)--(11.567543241830116,-0.9161967094720418)); draw((11.567543241830116,-0.9161967094720418)--(18.702978147777895,-3.643447182878647)); /* dots and labels */ dot((11.58,3.84),linewidth(3.pt) + dotstyle); label("$A$", (11.266,4.19), NE * labelscalefactor); dot((7.695508204334062,-6.323180324262812),linewidth(3.pt) + dotstyle); label("$B$", (7.196,-7.03), NE * labelscalefactor); dot((21.28751516505823,-6.358778587769432),linewidth(3.pt) + dotstyle); label("$C$", (21.474,-7.118), NE * labelscalefactor); dot((11.553355571799969,-6.3332842528108335),linewidth(3.pt) + dotstyle); label("$D$", (11.178,-7.096), NE * labelscalefactor); dot((14.80896445898262,0.4476289323269972),linewidth(3.pt) + dotstyle); label("$E$", (15.05,0.978), NE * labelscalefactor); dot((9.416145277196781,-1.8213958530929832),linewidth(3.pt) + dotstyle); label("$F$", (8.758,-1.464), NE * labelscalefactor); dot((11.56302336939229,-2.641958912032246),linewidth(3.pt) + dotstyle); label("$H$", (11.134,-2.256), NE * labelscalefactor); dot((8.729718573158161,-3.617326631043795),linewidth(3.pt) + dotstyle); label("$X$", (8.076,-3.994), NE * labelscalefactor); dot((18.702978147777895,-3.643447182878647),linewidth(3.pt) + dotstyle); label("$Y$", (18.878,-3.224), NE * labelscalefactor); dot((11.567543241830116,-0.9161967094720418),linewidth(3.pt) + dotstyle); label("$P$", (11.794,-0.474), NE * labelscalefactor); dot((11.56044940681504,-3.6247404811414308),linewidth(3.pt) + dotstyle); label("$G$", (10.98,-4.126), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/asy] $\textit{Proof}$ First, let $G$ is the midpoint of $DP$ and $H$ be the orthocenter of $\bigtriangleup ABC$. It's suffice to show that $X,G,Y$ collinear. Well known that $(AH,PD)=-1$ so we have $AH.AG=AP.AD (1)$ We have (since $XD$ tagents $(ADC)$ at $D$) $\angle XDP=\angle XDA=\angle ACB=\angle AFE\implies XFPD\quad\text{concyclic}$ Similarly we also have $YEPD$ is concyclic quadrilateral too. By $(1)$ we have $$AF.AX=AP.AD=AH.AG=AE.AY$$which implies that $XFHG,YEHG$ concyclic so we have $\angle XGH=\angle YGH=90^o$ Which implies $X,G,Y$ are collinear, the end the proof.$\quad\blacksquare$
30.12.2020 14:25
My solution: one can see that $P,F,X,D$ are cyclic implying $XD^2=XF\cdot XA=XP^2$ so we're done.
01.11.2021 18:02
MarkBcc168 wrote: Let $\triangle ABC$ be a triangle with altitudes $AD,BE,CF$. Let the lines $AD$ and $EF$ meet at $P$, let the tangent to the circumcircle of $\triangle ADC$ at $D$ meet the line $AB$ at $X$, and let the tangent to the circumcircle of $\triangle ADB$ at $D$ meet the line $AC$ at $Y$. Prove that the line $XY$ passes through the midpoint of $DP$. Claim. $P$ is the orthocenter of triangle $\triangle AXY$. Proof. Let $Q=XP\cap AY$ and $R=YP\cap AX$.
In the proofs that $EXBQ$ and $FYCR$ are cyclic, we use that $H$ is the incenter of the orthic triangle. From the conditions above we get $$ \measuredangle YQX=\measuredangle BQX=\measuredangle BEX=\measuredangle BEC=90^o \Longrightarrow YA\perp QX $$$$ \measuredangle YRX=\measuredangle YRC=\measuredangle YFC=\measuredangle BFC=90^o \Longrightarrow YR\perp AX $$Thus the Claim is proved. Now, $$ \measuredangle YAX=\measuredangle BAD+\measuredangle DAC=\measuredangle CDX+\measuredangle YDB=180^o-\measuredangle XDY $$Hence $D\in (AXY)$. In other words, $D$ is the intersection between $(AXY)$ and the $A$ altitude in $\triangle AXY$. This directly implies that $D$ is the reflection of the orthocenter of $\triangle AXY$ with respect to $XY$. That is, $D$ is the reflection of $P$ over $AD\cap XY$. Therefore, $XY$ passes through the midpoint of $DP$, and so we are done.
Attachments:

14.03.2022 09:04
Notice $$\measuredangle YDX=\measuredangle ADX+\measuredangle YDA=\measuredangle YXA+\measuredangle AYX=\measuredangle CAB$$so $AXDY$ is cyclic. Hence, $$\measuredangle FPD=\measuredangle CEP=\measuredangle ECD=\measuredangle BXD=\measuredangle FXD$$and $DPFX$ is cyclic. Therefore, $$\measuredangle XPD=\measuredangle XFD=\measuredangle ACD=\measuredangle EFA=\measuredangle PDX$$and $PX=XD.$ Similarly, $Y$ lies on the perpendicular bisector of $\overline{PD}.$ $\square$
30.11.2022 16:49
https://artofproblemsolving.com/community/c6h2968866_pq_bisects_dg__feet_of_altitudes_related Hope this is just a coincidence