Problem

Source: 2020 International Olympiad of Metropolises P5

Tags: combinatorics, game, game strategy



There is an empty table with $2^{100}$ rows and $100$ columns. Alice and Eva take turns filling the empty cells of the first row of the table, Alice plays first. In each move, Alice chooses an empty cell and puts a cross in it; Eva in each move chooses an empty cell and puts a zero. When no empty cells remain in the first row, the players move on to the second row, and so on (in each new row Alice plays first). The game ends when all the rows are filled. Alice wants to make as many different rows in the table as possible, while Eva wants to make as few as possible. How many different rows will be there in the table if both follow their best strategies? Proposed by Denis Afrizonov