Let $ \delta \approx 0^ +$
Let $ \epsilon \approx 0^ +$
Let $ \kappa = \frac {2 - 4\delta - \sqrt {(4\delta - 2 + \epsilon )^2 - 4\cdot 6\delta ^2}}{2}$
We claim that $ \boxed{(x_0,y_0,z_0) = (2\delta + \kappa, - \delta - \delta)}$ satisfies:
$ x_0^2 + y_0^2 + z_0^2\approx 0^ +$ and $ f(x_0,y_0,z_0) = 2 - \epsilon\approx 2^ -$
Since $ \delta \approx 0^ +$ and $ \epsilon \approx 0^ +$:
$ \kappa = \frac {2 - 4\delta - \sqrt {(4\delta - 2 + \epsilon )^2 - 4\cdot 6\delta ^2}}{2}\approx$
$ \approx \frac {2 - 4\cdot 0 - \sqrt {(4\cdot 0 - 2 + 0)^2 - 4\cdot 6\cdot 0^2}}{2} =$
$ = \frac {2 - \sqrt {2^2}}{2} = 0$
or, $ \kappa\approx 0$
Thus $ x_0 = 2\delta + \kappa\approx 0 ,y_0 = z_0 = - \delta\approx 0^ -$
Hence $ x_0^2,y_0^2,z_0^2\approx 0^ +$
$ \kappa$ is a root of the quadratic $ x^2 + x(4\delta - 2 + \epsilon) + 6\delta ^2 = 0$.
Thus $ \kappa$ satisfies $ \kappa ^2 + \kappa (4\delta - 2 + \epsilon) + 6\delta ^2 = 0$
Which is equivalent to:
$ \frac {(2\delta + \kappa)^2 + 2\delta ^2}{\kappa} = 2 - \epsilon$
But the LHS is precisely $ f(x_0,y_0,z_0)$
Hence our claim is true.