Problem

Source: Korea National Olympiad 2020 P6

Tags: geometry, Korea, pentagon



Let $ABCDE$ be a convex pentagon such that quadrilateral $ABDE$ is a parallelogram and quadrilateral $BCDE$ is inscribed in a circle. The circle with center $C$ and radius $CD$ intersects the line $BD, DE$ at points $F, G(\neq D)$, and points $A, F, G$ is on line l. Let $H$ be the intersection point of line $l$ and segment $BC$. Consider the set of circle $\Omega$ satisfying the following condition. Circle $\Omega$ passes through $A, H$ and intersects the sides $AB, AE$ at point other than $A$. Let $P, Q(\neq A)$ be the intersection point of circle $\Omega$ and sides $AB, AE$. Prove that $AP+AQ$ is constant.