Problem

Source: 2019 Balkan MO Shortlist G8 - BMO

Tags: geometry, Symmetric, concurrency, concurrent, orthocenter



Given an acute triangle $ABC$, $(c)$ its circumcircle with center $O$ and $H$ the orthocenter of the triangle $ABC$. The line $AO$ intersects $(c)$ at the point $D$. Let $D_1, D_2$ and $H_2, H_3$ be the symmetrical points of the points $D$ and $H$ with respect to the lines $AB, AC$ respectively. Let $(c_1)$ be the circumcircle of the triangle $AD_1D_2$. Suppose that the line $AH$ intersects again $(c_1)$ at the point $U$, the line $H_2H_3$ intersects the segment $D_1D_2$ at the point $K_1$ and the line $DH_3$ intersects the segment $UD_2$ at the point $L_1$. Prove that one of the intersection points of the circumcircles of the triangles $D_1K_1H_2$ and $UDL_1$ lies on the line $K_1L_1$.