Problem

Source: IMO Shortlist 2019 C6

Tags: IMO Shortlist, combinatorics, IMO Shortlist 2019, angles, combinatorial geometry



Let $n>1$ be an integer. Suppose we are given $2n$ points in the plane such that no three of them are collinear. The points are to be labelled $A_1, A_2, \dots , A_{2n}$ in some order. We then consider the $2n$ angles $\angle A_1A_2A_3, \angle A_2A_3A_4, \dots , \angle A_{2n-2}A_{2n-1}A_{2n}, \angle A_{2n-1}A_{2n}A_1, \angle A_{2n}A_1A_2$. We measure each angle in the way that gives the smallest positive value (i.e. between $0^{\circ}$ and $180^{\circ}$). Prove that there exists an ordering of the given points such that the resulting $2n$ angles can be separated into two groups with the sum of one group of angles equal to the sum of the other group.