For a triangle $ ABC,$ let $ k$ be its circumcircle with radius $ r.$ The bisectors of the inner angles $ A, B,$ and $ C$ of the triangle intersect respectively the circle $ k$ again at points $ A', B',$ and $ C'.$ Prove the inequality \[ 16Q^3 \geq 27 r^4 P,\] where $ Q$ and $ P$ are the areas of the triangles $ A'B'C'$ and $ABC$ respectively.
Problem
Source: IMO Shortlist 1989, Problem 6, ILL 14
Tags: geometry, circumcircle, geometric inequality, area of a triangle, IMO Shortlist
20.09.2008 00:05
orl wrote: For a triangle $ ABC,$ let $ k$ be its circumcircle with radius $ r.$ The bisectors of the inner angles $ A, B,$ and $ C$ of the triangle intersect respectively the circle $ k$ again at points $ A', B',$ and $ C'.$ Prove the inequality \[ 16Q^3 \geq 27 r^4 P, \] where $ Q$ and $ P$ are the areas of the triangles $ A'B'C'$ and ABC respectively. Let : $ \angle A=2\alpha$ , $ \angle B=2\beta$ , $ \angle C=2\gamma$ , $ R$- circumcircle radius , $ r$ - incircle radius , $ s$ - semiperimeter $ \triangle ABC$ $ \angle A'C'B' = \alpha+\beta$ , $ \angle C'B'A' = \gamma+\alpha$ , $ \angle B'A'C' = \beta+\alpha$; \[ Q=2R^2sin(\alpha+\beta)sin(\gamma+\alpha)sin(\beta+\alpha)= 2R^2cos(\alpha)cos(\beta)cos(\gamma)=\frac{sR}{2};\] So : $ 16Q^3= 2s^3R^3\ge 27 R^4(sr)= 27R^4P$ ; ($ s^2 \ge \frac{27}{2} Rr$, $ P= sr$)
30.04.2021 00:49
Setting the Circumcenter as $O$, we get $P=[ABC]=[AOB]+[BOC]+[COA]=\frac{r^2}{2}(\sin{2A}+\sin{2B}+\sin{2C})$. Now, $Q=[A'B'C']=\frac{r^2}{2}[\sin{(A+B)}+\sin{(B+C)}+\sin{(C+A)}]$. We have: $$2[\sin{(A+B)}+\sin{(B+C)}+\sin{(C+A)}]^3\geq \frac{27}{2}(\sin{2A}+\sin{2B}+\sin{2C})$$By AM-GM: $$2[\sin{(A+B)}+\sin{(B+C)}+\sin{(C+A)}]^3\geq 2(\sin{(A+B)} \sin{(B+C)} \sin{(C+A)})$$$$\dots \geq 27(2\sin{(A+B)} \sin{(B+C)})(\sin{(C+A)})$$$$\dots \geq 27(\cos{(A-C)}-\cos{(A+2B+C)})(\sin{(C+A)})$$$$\dots \geq 27(\frac{1}{2})((\sin{2A}+\sin{2C})-(\sin{(2A+2B+2C)}+ \sin{(-2C)})$$$$\dots \geq \frac{27}{2}(\sin{2A}+\sin{2B}+\sin{2C})$$which is our original expression. $\blacksquare$
03.08.2021 23:54
10.12.2023 17:09
Sourorange wrote: Setting the Circumcenter as $O$, we get $P=[ABC]=[AOB]+[BOC]+[COA]=\frac{r^2}{2}(\sin{2A}+\sin{2B}+\sin{2C})$. Now, $Q=[A'B'C']=\frac{r^2}{2}[\sin{(A+B)}+\sin{(B+C)}+\sin{(C+A)}]$. We have: $$2[\sin{(A+B)}+\sin{(B+C)}+\sin{(C+A)}]^3\geq \frac{27}{2}(\sin{2A}+\sin{2B}+\sin{2C})$$By AM-GM: $$2[\sin{(A+B)}+\sin{(B+C)}+\sin{(C+A)}]^3\geq 2(\sin{(A+B)} \sin{(B+C)} \sin{(C+A)})$$$$\dots \geq 27(2\sin{(A+B)} \sin{(B+C)})(\sin{(C+A)})$$$$\dots \geq 27(\cos{(A-C)}-\cos{(A+2B+C)})(\sin{(C+A)})$$$$\dots \geq 27(\frac{1}{2})((\sin{2A}+\sin{2C})-(\sin{(2A+2B+2C)}+ \sin{(-2C)})$$$$\dots \geq \frac{27}{2}(\sin{2A}+\sin{2B}+\sin{2C})$$which is our original expression. $\blacksquare$