Find the total number of solutions to the following system of equations:
$ \{\begin{array}{l} a^2 + bc\equiv a \pmod{37} \\
b(a + d)\equiv b \pmod{37} \\
c(a + d)\equiv c \pmod{37} \\
bc + d^2\equiv d \pmod{37} \\
ad - bc\equiv 1 \pmod{37} \end{array}$
If $ a + d\equiv 1$ then by the first and sixth:
$ ad - bc \equiv ad - (a - a^2) \equiv a(d + a - 1) \equiv 0$ contradiction!
So $ a + d$ is not congruent to 1, so $ b\equiv c\equiv 0$
$ a(a - 1) \equiv 0$
$ d(d - 1) \equiv 0$
$ ad \equiv 1$
So by the third, neither a nor b is congruent to 0, so they're both congruent to 1. Hence, $ a\equiv\b\equiv 1$
And we're done.
I think I got another solution:
Consider $ 2 \times 2$ matrix$ A=$\[ \left( \begin{array}{ccc}a & b \\c & d \\\end{array} \right)\]
From first four equation, it gives that $ A^2=A$,
From last equation, it dives that $ det(A)=1(\neq0)$. It means $ A^{-1}=$\[ \left( \begin{array}{ccc}d & -b \\-c & a \\\end{array} \right)\]
Then, $ A^2A^{-1}=AA^{-1} \Rightarrow A=I$
So, $ a=d=1$ and $ b=c=0$