Find the highest degree $ k$ of $ 1991$ for which $ 1991^k$ divides the number \[ 1990^{1991^{1992}} + 1992^{1991^{1990}}.\]
Problem
Source: IMO ShortList 1991, Problem 18 (BUL 1)
Tags: algebra, binomial theorem, number theory, Divisibility, IMO Shortlist
28.08.2009 03:10
By the binomial theorem is easy to prove that if $ x \equiv 1 (mod m^k)$ then $ x^{m^n} \equiv 1 (mod m^{k+n})$ for every integers positive $ x, m$, and if $ m$ is odd and $ x$ satisfying $ x \equiv -1 (mod m^k)$ then $ x^{m^n} \equiv -1 (mod m^{k+n})$. Thus $ 1992^{1991^{1990}} \equiv 1 (mod 1991^{1991})$ and $ 1990^{1991^{1992}} \equiv -1 (mod 1991^{1993})$. Hence, the highest degree is $ 1991$.
28.08.2009 06:30
unless I am mistaken, this is a simple application of lifting the exponent. $ 1991 = 11 \times 181$ let $ S = 1990^{1991^{1992}} + 1992^{1991^{1990}} = (1990^{1991^{2}})^{1991^{1990}} - ( - 1992)^{1991^{1990}}.$ then the highest degree of $ 11$ dividing $ S$ equals $ 1990 + 1 = 1991$ since $ 11\|(1990^{1991^{2}}) - ( - 1992) = 1991 [(\sum_{i = 0}^{1991^{2} - 1}( - 1990)^{i}) + 1].$ the same thing goes with $ 181$ and we are done
02.09.2013 17:57
More simple! We let $1991=a$ then $a$ is a prime. By Lifting The Exponent lemma \[\begin{aligned} v_a \left( (a-1)^{a^{a+1}}+ (a+1)^{a^{a-1}} \right) & = v_a \left( (a-1)^{a^2})^{a^{a-1}}+ (a+1)^{a^{a-1}} \right) \\ & = v_a \left( (a-1)^{a^2}+a+1 \right)+ v_a(a^{a-1}) \\ & = a-1+v_a \left( (a-1)^{a^2}+a+1 \right) \end{aligned} \] We have $v_a \left( (a-1)^{a^2}+1 \right)= v_a(a)+v_a(a^2)=3$ so $v_a \left( (a-1)^{a^2}+a+1 \right) =1$. Thus, $v_a \left( (a-1)^{a^{a+1}}+ (a+1)^{a^{a-1}} \right) = a$. We obtain $\max k =a= \boxed{1991}$.
05.01.2014 18:18
orl wrote: Find the highest degree $ k$ of $ 1991$ for which $ 1991^k$ divides the number \[ 1990^{1991^{1992}} + 1992^{1991^{1990}}.\] Note that $1990^{1991^{1992}}=(1990^{1991^2})^{1991^{1990}}$. Hence by LTE, \begin{align*}v_{1991}(1990^{1991^{1992}}+1992^{1991^{1990}}) & =v_{1991}((1990^{1991^2})^{1991^{1990}}+1992^{1991^{1990}})\\ &=v_{1991}(1990^{1991^2}+1992)+v_{1991}(1991^{1990)})\\ &=v_{1991}(1990^{1991^2}+1992)+1990.\end{align*} It remains to find $v_{1991}(1990^{1991^2}+1992)$. We re-write this as $v_{1991}(1990^{1991^2}+1+1992-1)=\min\{v_{1991}(1990^{1991^2}),v_{1991}(1992-1)\}$. The second one is $1$, so we check $v_{1991}(1990^{1991^2}+1)=v_{1991}(1991)+v_{1991}(1991^2)=3>1$. It follows that $v_{1991}(1990^{1991^2}+1992)=1$. Thus, \begin{align*}v_{1991}(1990^{1991^{1992}}+1992^{1991^{1990}}) & =v_{1991}(1990^{1991^2}+1992)+1990\\ &=1+1990\\ &=\boxed{1991}.\end{align*}
05.01.2014 18:38
shinichiman wrote: More simple! We let $1991=a$ then $a$ is a prime. Umm nope since $1991=11 \times 181$.
20.08.2015 06:43
I did this by letting $1990 = 1991 -1 $ and $1992 = 1991 +1 $ and then expanding using the binomial theorem. The "ones" cancel out and we are left with giant powers of $1991$. Observing the second to last term tells us that the minimal degree of a $1991$ is indeed $1991$.
03.10.2017 04:04
shinichiman wrote: More simple! We let $1991=a$ then $a$ is a prime. By Lifting The Exponent lemma \[\begin{aligned} v_a \left( (a-1)^{a^{a+1}}+ (a+1)^{a^{a-1}} \right) & = v_a \left( (a-1)^{a^2})^{a^{a-1}}+ (a+1)^{a^{a-1}} \right) \\ & = v_a \left( (a-1)^{a^2}+a+1 \right)+ v_a(a^{a-1}) \\ & = a-1+v_a \left( (a-1)^{a^2}+a+1 \right) \end{aligned} \]We have $v_a \left( (a-1)^{a^2}+1 \right)= v_a(a)+v_a(a^2)=3$ so $v_a \left( (a-1)^{a^2}+a+1 \right) =1$. Thus, $v_a \left( (a-1)^{a^{a+1}}+ (a+1)^{a^{a-1}} \right) = a$. We obtain $\max k =a= \boxed{1991}$. 1991 isn't a prime.
02.08.2020 19:54
o0f bash Solution Note that $$1990^{1991^{1992}}+1992^{1991^{1990}}=(1990^{1991^{2}})^{1991^{1990}}+1992^{1991^{1990}}.$$Since $1991$ may be prime factorized as $11\cdot 181$, $$v_{1991}((1990^{1991^{2}})^{1991^{1990}}+1992^{1991^{1990}})=\min(v_{11}((1990^{1991^{2}})^{1991^{1990}}+1992^{1991^{1990}}),v_{181}((1990^{1991^{2}})^{1991^{1990}}+1992^{1991^{1990}})).$$Since $$1990^{1991^{2}}+1992\equiv (-1)^{1991^{2}}+1\equiv 0 \pmod{11}$$and $1991^{1990}\equiv 1\pmod{2}$, the Lifting the Exponent Lemma yields $$v_{11}((1990^{1991^{2}})^{1991^{1990}}+1992^{1991^{1990}})=v_{11}(1990^{1991^{2}}+1992)+v_{11}(1991^{1990}).$$Note that $$v_{11}(1990^{1991^{2}}+1992)=v_{11}((181\cdot 11-1)^{1991^{2}}+181\cdot 11 + 1)=$$$$v_{11}((-1+\tbinom{1991^2}{1}\cdot 181 \cdot 11 - \tbinom{1991^2}{2}\cdot 181^2 \cdot 11^2 +...)+181\cdot 11 +1)=v_{11}((1991^2+1)\cdot 181\cdot 11) = 1.$$Note that $v_{11}(1991^{1990})=1990$, thus $v_{11}((1990^{1991^{2}})^{1991^{1990}}+1992^{1991^{1990}})=1991.$ $\square$ Since $$1990^{1991^{2}}+1992\equiv (-1)^{1991^{2}}+1\equiv 0 \pmod{181}$$and $1991^{1990}\equiv 1\pmod{2}$, the Lifting the Exponent Lemma yields $$v_{181}((1990^{1991^{2}})^{1991^{1990}}+1992^{1991^{1990}})=v_{181}(1990^{1991^{2}}+1992)+v_{181}(1991^{1990}).$$Note that $$v_{181}(1990^{1991^{2}}+1992)=v_{181}((181\cdot 11-1)^{1991^{2}}+181\cdot 11 + 1)=$$$$v_{181}((-1+\tbinom{1991^2}{1}\cdot 181 \cdot 11 - \tbinom{1991^2}{2}\cdot 181^2 \cdot 11^2 +...)+181\cdot 11 +1)=v_{181}((1991^2+1)\cdot 181\cdot 11) = 1.$$Note that $v_{181}(1991^{1990})=1990$, thus $v_{181}((1990^{1991^{2}})^{1991^{1990}}+1992^{1991^{1990}})=1991.$ $\square$ Thus $k=v_{1991}((1990^{1991^{2}})^{1991^{1990}}+1992^{1991^{1990}})=\min(1991,1991)=1991$, as desired. $\blacksquare$
01.03.2021 10:17
LEMMA:- For every odd number $a\ge 3$ and integer $n\ge 0,$ the following holds. $$a^{n+1}||(a+1)^{a^n} - 1, a^{n+1}|| (a-1)^{a^n} + 1$$. These lemma can be proved by induction on $n$. The problem is trivial from here.
11.10.2021 04:36
The answer is $\boxed{1991}$. We can rewrite the expression as $$\nu_{1991}(1990^{1991^{1992}} + 1992^{1991^{1990}}) = \nu_{1991}([1990^{1991^2}]^{1991^{1990}} + 1992^{1991^{1990}}$$$$= \nu_{1991}([1990^{1991^2}]^{1991^{1990}} - (-1992^{1991^{1990}})).$$By the LTE lemma, this is equal to $$1990 + \nu_{1991}(1990^{1991^2} + 1992).$$The finishing step is to realize that $$\nu_{1991}(1990^{1991^2} + 1) = 1 + 2 = 3,$$which implies that the second $\nu_{1991}$ must be equal to exactly 1, hence the result. Remark. Note that 1991 is not prime, so some of our early manipulations might be handwavy directly. However, we can simply replace 1991 by the product of its two distinct prime factors then run the algorithm similarly.
24.11.2021 17:29
The answer is $\boxed{1991}$. Notice that $1991 \mid 1990^{1991^{1992}} + 1992^{1991^{1990}}$ and $1981=11*181$ So,$11,181 \mid 1990^{1991^{1992}} + 1992^{1991^{1990}}$ and moreover $11,181 \mid 1990+1992$ and thus we are ready to use LTE Applying $\nu_{11}$ both side,we get $$k \leq \nu_{11}(1990^{1991^{1992}} + 1992^{1991^{1990}}=(1990^{1991^{2}})^{1991^{1990}} +1992^{1991^{1990}})$$$$=\nu_{11}(1990^{1991^{2}}+1992)+\nu_{11}(1991^{1990})=\nu_{11}(1990^{1991^{2}}+1992)+1990=1991$$Similarly, $$\nu_{181}(1990^{1991^{2}}+1992)+\nu_{181}(1991^{1990})=\nu_{181}(1990^{1991^{2}}+1992)+1990=1991$$which implies $\boxed{k=1991}$
30.01.2022 18:27
If Alexander Remorov is right,this is N5.Also I don't think that the above solution is correct. ISL 1991 N5 wrote: Find the highest degree $ k$ of $ 1991$ for which $ 1991^k$ divides the number \[ 1990^{1991^{1992}} + 1992^{1991^{1990}}.\] First we find $v_{11}(1990^{{1991}^2}+1992)$.Alternately we will prove that $v_{121}(1990^{{1991}^2}+1992)=0$.We will be using Fermats little theorem and Eulers theorem repeatedly,so we will not state the time of their usages. \begin{align*}&(1990^{1991})^{1991}+1992 \equiv (54^{1991})^{1991}+1992 \pmod{121} \\ &\implies (54^{11})^{1991}+1992 \equiv (54^{1991})^{11}+1992 \pmod{121} \\ &\implies 54^{{11}^{11}}+1992 \equiv 54^{11}+1992 \pmod{121} \\ &\implies (54^2)^5.54+1992 \equiv 12^5.54+1992 \pmod{121} \\ &\implies 1728.144.54+56 \equiv 34.23.54+56 \pmod{121} \\ &\implies 782.54+56 \equiv 56.54+56 \equiv 56.55 \ne 0 \pmod{121} \end{align*}Again by standard modulo work we get $11$ divides the expression $1990^{{1991}^2}+1992$ and thus $v_{11}$ of the expression is $1$. Now we will use L.T.E $$v_{11}(1990^{{1991}^{1992}}+1992^{{1991}^{1990}})=v_{11}((1990^{{1991}^2})^{{1991}^{1990}}+1992^{{1991}^{1990}})=v_{11}(1990^{{1991}^2}+1992)+1990=1991$$Similarly we get that $$v_{181}(1990^{{1991}^{1992}}+1992^{{1991}^{1990}}) >1990$$Since $1991=11.181$ we can simply ignore the $v_{181}$ condition and write $k_{\text{max}}=1991$ $\blacksquare$
23.08.2022 09:03
We claim the answer is $1991.$ Notice $1991=11\cdot 181$ and $k\ge 1.$ Hence, by LTE, $$\nu_{11}\left(\left(1990^{1991^2}\right)^{1991^{1990}} + 1992^{1991^{1990}}\right)=\nu_{11}(1990^{1991^2}+1992)+\nu_{11}(1991^{1990}).$$Notice $$(1991-1)^{1991^2}+1992\equiv -1+1992\equiv 1991\pmod{1991^2}$$so $\nu_{11}(1990^{1991^2}+1992)=1$ and $k\le 1991.$ Similarly for $181,$ we can conclude that $181^{1990+1}$ divides our number, so $k=1991$ is achievable. $\square$
15.01.2023 22:35
bruh Let's first do a bit of manipulation so that exponents match: $$1990^{1991^{1992}}=1990^{1991^2\cdot 1991^{1990}}=(1990^{1991^2})^{1991^{1990}}.$$Note that $1992+1990^{1991^2}$ is a multiple of 11 since the first term is 1 mod 11 and the second is -1 mod 11, so by LTE we have $$v_{11}(1992^{1991^{1990}}-(-1990^{1991^2})^{1991^{1990}})$$$$=v_{11}(1992+1990^{1991^2})+v_{11}(1991^{1990})=v_{11}(1992+1990^{1991^2})+1990.$$We can also compute that $$1992+1990^{1991^2}\equiv 56+54^{1991^2}\equiv 56+54^{11^2}\equiv 56+54^{11}\equiv 55\pmod {121},$$so $v_{11}(1992+1990^{1991^2})=1$ and the $v_{11}$ of the entire thing is $1991$. We proceed similarly with $$v_{181}(1992^{1991^{1990}}-(-1990^{1991^2})^{1991^{1990}})$$$$=v_{181}(1992+1990^{1991^2})+v_{181}(1991^{1990})=v_{181}(1992+1990^{1991^2})+1990.$$We do some more tedious calculation to see that $v_{181}(1992+1990^{1991^2})=1$, so this is also 1991. Therefore, the answer is $\min(1991,1991)=1991.$
05.03.2023 19:46
Let $x=1990^{1991^2}, y=1992$. Our expression can be rewritten as $$A=x^{1991^{1990}}-(-y)^{1991^{1990}}.$$Note that (using $p=11, 181$) all the conditions for LTE are met. Then we have $$\nu_{11}(A)=1+\nu_{11}(1991^{1990})=1991,$$and similarly $\nu_{181}(A)=1991$, so the largest such $k$ is $1991$.
07.03.2023 20:16
Cool, but I just wanted to mention out that after getting $\nu_{11}(A)=1991$, we don't actually need to check it for $\nu_{181}(A)$ since it will also be $\ge 1991$ as $181 \mid 1990^{1991^2}+1992$. So we automatically get $k=1991$. Many of the above posts actually calculated it.
23.04.2023 05:31
Two main realizations here: - We should make the power the same to use LTE - LTE can be used even in addition by negating the second term With this in mind, $\nu_{11}(A^{1991^{1990}} + B^{1991^{1990}}) = \nu_{11}(A + B) + \nu_{11}(1991^{1990}) = 1 + 1990 = 1991$ ($A = 1990^{1991^2}, B=1992$), $\nu_{11}(A + B) = 1$ by binomial expansion. Now, we don't even have to compute $\nu_{181}(A^{1991^{1990}} + B^{1991^{1990}})$, as we know it will be $\ge 1991$. Regardless, our final answer is $\boxed{1991}$.
01.05.2023 20:11
We can rewrite the given as $1990^{1991^{1992}} + -1^{1991^{1992}} + 1992^{1991^{1990}} + 1^{1991^{1990}}$. We can use LOE to see that $v_p(1990^{1991^{1992}} + -1^{1991^{1992}}) = 1 + 1992$ and $v_p(1992^{1991^{1990}} + 1^{1991^{1990}}) = 1 + 1990$. For $p = 11, 181$. Since $v_p(x+y) = \min(x, y)$ if $x \neq y$ and $1991 = 11 \cdot181$ and $11$ and $181$ are prime, we can see our answer of $\boxed{1991}$. $\blacksquare$
01.05.2023 20:21
Just write $1991=11 \times 181$ and use LTE on both of those numbers.
01.05.2023 20:59
S.Das93 wrote: Just write $1991=11 \times 181$ and use LTE on both of those numbers. yea i know I just needed to go right then
01.05.2023 22:20
Math4Life7 wrote: We can rewrite the given as $1990^{1991^{1992}} + -1^{1991^{1992}} + 1992^{1991^{1990}} + 1^{1991^{1990}}$. We can use LTE to see that $v_p(1990^{1991^{1992}} + -1^{1991^{1992}}) = 1 + 1992$ and $v_p(1992^{1991^{1990}} + 1^{1991^{1990}}) = 1 + 1990$. For $p = 11, 181$. Since $v_p(x+y) = \min(x, y)$ if $x \neq y$ and $1991 = 11 \cdot181$ and $11$ and $181$ are prime, we can see our answer of $\boxed{1991}$. $\blacksquare$
22.07.2023 20:50
The answer is $1991$. We implement LTE. First express $$1990^{1991^{1992}} + 1992^{1991^{1990}} = (1990^{1991^2})^{1991^{1990}} + (1992)^{1991^{1990}}$$ Note that $1991^{1990}$ is odd and $11 \mid 1990^{1991^2} + 1992$ but $11 \nmid 1990^{1991^2}$ and $11 \nmid 1992$ so we can apply LTE. It follows that $$v_{11}((1990^{1991^2})^{1991^{1990}} + (1992)^{1991^{1990}}) = v_{11}(1990^{1991^2}+1992) + v_{11}(1991^{1990}) = v_{11}(1990^{1991^2}+1992) + 1990$$ With some mod bashing we see that $v_{11}(1990^{1991^2}+1992) = 1$ so $v_{11}((1990^{1991^2})^{1991^{1990}} + (1992)^{1991^{1990}}) = 1991$. Note we can follow a similar process to get that $v_{181}((1990^{1991^2})^{1991^{1990}} + (1992)^{1991^{1990}}) \geq 1991$ so the answer is $1991$.
08.09.2023 06:02
25.09.2023 02:36
We claim the answer is $1991=11\cdot 181$ which clearly works. We now prove this is the maximum. Let $x=1990^{1991^2}$ and $y=1992$. Looking at $x+y$, we can see that it is: \[1991^{1991^2}-\dots+\binom{1991^2}{1}\cdot 1991-1+1991+1\equiv 1991\cdot 2\pmod{1991^2}.\] Note that $x+y\equiv 0\pmod{11}$. By LTE: \begin{align*} v_{11}\left(1990^{1991^{1992}} + 1992^{1991^{1990}}\right)&=v_{11}(x+y)+1990\\ &=1991.\\ \end{align*}Similarly, $v_{181}(x+y)=1991$, so we have our desired answer.
24.10.2023 20:27
Let $A= {1990^{1991}}^2$ and $B=1992$. We want to find \[\nu_{1991}(A^{1991^{1990}}+B^{1991^{1990}})\] Notice for $p \in \{11,181\}$, we have \[\nu_p(A^{1991^{1990}}+B^{1991^{1990}})=\nu_p(A+B)+\nu_p(1991^{1990}) = 1991\] so we conclude that the answer is $\boxed{1991}$.
04.11.2023 00:45
First, take $v_{11}$ of the expression, and note that by LTE, \[ v_{11}(1990^{1991^{1992}} + 1992^{1991^{1990}} = v_{11}((1990^{1991^2})^{1991^{1990}} + 1992^{1991^{1990}}) = v_{11}(1990^{1991^2} + 1992) + 1990 \]Note that $v_{11}(1990^{1991^2} + 1992^{1991^2}) = v_{11}(1991*2) + v_{11}(1991^2) = 3$. However, we also have that \[ v_{11}(1992^{1991^2} - 1992) = v_{11}(1992^{1990 \cdot 1992} - 1) = v_{11}(1991) + v_{11}(1990 \cdot 1992) = 1 \]Thus, $v_{11}(1990^{1991^2} + 1992) = 1$, and we find that $v_{11}$ of the expression is $1991$. A similar argument with $v_{181}$ also holds, so the answer is $\boxed{1991}$. $\blacksquare$
13.12.2023 23:31
Note that $1991 = 181 \cdot 11$. Suppose $p$ is one of these two primes. Using LTE, we get \[v_p \left((1990^{1991^2})^{1991^{1990}} + (1992)^{1991^{1990}}\right) = v_p(1990^{1991^2}+1992) + 1990.\] From Binomial Theorem, we know \begin{align*} 1990^{1991^2}+1992 &= (1991-1)^{1991^2}+1992 \\ &\equiv 1991 \cdot \binom{1991^2}{1}-1+1992 \\ &\equiv 1991 \pmod{1991^2} \end{align*} Hence $v_p(1990^{1991^2}+1992)=1$, so our ansswer is $\boxed{1991}$.
15.04.2024 12:37
Rewrite $1990^{1991^{1992}} + 1992^{1991^{1990}} = \left(1990^{1991^{1992}} + 1\right) + \left(1992^{1991^{1990}}-1\right)$. Now observe that $1991 = 11*181$. From LTE, $\nu_{11}\left(1990^{1991^{1992}} + 1\right) = \nu_{11}\left(1991\right) + \nu_{11}\left(1991^{1992}\right) = 1993$, $\nu_{11}\left(1992^{1991^{1990}} - 1\right) = \nu_{11}\left(1991\right) + \nu_{11}\left(1991^{1990}\right) = 1991$. Therefore, $\nu_{11}\left(\left(1990^{1991^{1992}} + 1\right) + \left(1992^{1991^{1990}}-1\right)\right) = 1991$. From similar calculations, $\nu_{181}\left(\left(1990^{1991^{1992}} + 1\right) + \left(1992^{1991^{1990}}-1\right)\right) = 1991$. Therefore, the answer is $\boxed{k = 1991}$. $\square$
26.04.2024 04:37
$v_{11}(1990^{1991^{1992}} + 1992^{1991^{1990}})=v_{11}((1990^{1991^2})^{1991^{1990}} + 1992^{1991^{1990}})=v_{11}(1990^{1991^2}+1992)+v_{11}(1991^{1990})=1+1990=1991$ Use the same logic for $181$ to get that it equals $v_{11}(1990^{1991^2}+1992)+1990 > 1+1990 = 1991$, since $1990^{1991^2}+1992$ divides $181$, and it might divide $181^2$, but that does not matter, since it does not divide $121^2$ So the answer is $\boxed{1991}$
01.05.2024 17:56
Max D.R. wrote: By the binomial theorem is easy to prove that if $ x \equiv 1 (mod m^k)$ then $ x^{m^n} \equiv 1 (mod m^{k+n})$ for every integers positive $ x, m$, and if $ m$ is odd and $ x$ satisfying $ x \equiv -1 (mod m^k)$ then $ x^{m^n} \equiv -1 (mod m^{k+n})$. Thus $ 1992^{1991^{1990}} \equiv 1 (mod 1991^{1991})$ and $ 1990^{1991^{1992}} \equiv -1 (mod 1991^{1993})$. Hence, the highest degree is $ 1991$. Thanks for eliminating some of the LTE corruption from this page. Initially I thought you got this motto from "nothing", but maybe it will make sense after some progress on the problem.
05.05.2024 16:34
We have that 1991 = 11.181. Let p be 11 or 181. We can now change the statement to $1990^{1991^{1992}} + 1^{1991^{1992}} + 1992^{1991^{1990}} - 1^{1991^{1990}}$. By LTE we get that $\nu_p(1992^{1991^{1990}} - 1^{1991^{1990}}) = \nu_p(1991) + \nu_p(1991^{1990}) = 1991$ and $\nu_p(1990^{1991^{1992}} + 1^{1991^{1992}}) = \nu_p(1991) + \nu_p(1991^{1992}) = 1993$ $\Rightarrow$ $\nu_p(1990^{1991^{1992}} + 1992^{1991^{1990}}) = \min\left\{\nu_{p}(\nu_p(1992^{1991^{1990}} - 1^{1991^{1990}})),\nu_{p}(\nu_p(1990^{1991^{1992}} + 1^{1991^{1992}}))\right\} = 1991$ $\Rightarrow$ the number we searched is k = 1991.
11.07.2024 19:19
We split $1991$ into $11, 181$. Then note that $1990^{1991^{1992}}+1992^{1991^{1990}}=(1990^{1991^2})^{1991^{1990}}+1992^{1991^{1990}}$. Then by LTE $\nu_{11}((1990^{1991^2})^{1991^{1990}}+1992^{1991^{1990}})=\nu_{11}(1990^{1991^2}+1992)+\nu_{11}(1991^{1990})=\nu_{11}(1990^{1991^2}+1992)+1990$. We can check easily that $11 \mid 1990^{1991^2}+1992$. Now, we calculate $1990^{1991^2}+1992 \mod{11^2}$. Since $1991^2 \equiv 11^2 \equiv 11 \mod{\varphi(11^2)}$, we have $54^{11}+56 \equiv (55-1)^{11}+56 \equiv 11(55)-1+56 \equiv 55 \mod{11^2}$. Thus, $\nu_{11}=1991$. We can easily check that $\nu_{181}$ is at least $1991$ similarly, so $k=1991$.
13.09.2024 08:00
Let $N$ denote the integer in question; we have \[N = \left(1990^{1991^2}\right)^{1991^{1990}} + 1992^{1991^{1990}}.\]Noting that $1991 = 11 \cdot 181$, by LTE we obtain \[\nu_{11}(N) = \nu_{11}\left(1990^{1991^2} + 1992\right) + \nu_{11}(1991^{1990}) = 1 + 1990 = 1991,\]since \[\nu_{11}\left(1990^{1991^2} + 1^{1991^2}\right) = \nu_{11}(1991) + \nu_{11}(1991^2) = 3\]and \[\nu_{11}\left(1990^{1991^2} + 1992\right) = \nu_{11}\left(\left(1990^{1991^2} + 1\right) + 1991\right) = \min(3, 1) = 1.\]Similarly, $\nu_{181}(N) = 1991$ for the exact same reasons. Thus the largest such integer $k$ is $1991$. $\square$