Problem

Source: 2018 Saudi Arabia BMO TST II p1

Tags: radical axis, geometry, bisects segment



Let $ABC$ be a triangle with $M, N, P$ as midpoints of the segments $BC, CA,AB$ respectively. Suppose that $I$ is the intersection of angle bisectors of $\angle BPM, \angle MNP$ and $J$ is the intersection of angle bisectors of $\angle CN M, \angle MPN$. Denote $(\omega_1)$ as the circle of center $I$ and tangent to $MP$ at $D$, $(\omega_2)$ as the circle of center $J$ and tangent to $MN$ at $E$. a) Prove that $DE$ is parallel to $BC$. b) Prove that the radical axis of two circles $(\omega_1), (\omega_2)$ bisects the segment $DE$.