Problem

Source: IMO Shortlist 1992, Problem 17

Tags: inequalities, algebra, Digits, binary representation, combinatorics, Sequence, IMO Shortlist



Let $ \alpha(n)$ be the number of digits equal to one in the binary representation of a positive integer $ n.$ Prove that: (a) the inequality $ \alpha(n) (n^2 ) \leq \frac{1}{2} \alpha(n)(\alpha(n) + 1)$ holds; (b) the above inequality is an equality for infinitely many positive integers, and (c) there exists a sequence $ (n_i )^{\infty}_1$ such that $ \frac{\alpha ( n^2_i )}{\alpha (n_i }$ goes to zero as $ i$ goes to $ \infty.$ Alternative problem: Prove that there exists a sequence a sequence $ (n_i )^{\infty}_1$ such that $ \frac{\alpha ( n^2_i )}{\alpha (n_i )}$ (d) $ \infty;$ (e) an arbitrary real number $ \gamma \in (0,1)$; (f) an arbitrary real number $ \gamma \geq 0$; as $ i$ goes to $ \infty.$