The diagonals of a quadrilateral $ ABCD$ are perpendicular: $ AC \perp BD.$ Four squares, $ ABEF,BCGH,CDIJ,DAKL,$ are erected externally on its sides. The intersection points of the pairs of straight lines $ CL, DF, AH, BJ$ are denoted by $ P_1,Q_1,R_1, S_1,$ respectively (left figure), and the intersection points of the pairs of straight lines $ AI, BK, CE DG$ are denoted by $ P_2,Q_2,R_2, S_2,$ respectively (right figure). Prove that $ P_1Q_1R_1S_1 \cong P_2Q_2R_2S_2$ where $ P_1,Q_1,R_1, S_1$ and $ P_2,Q_2,R_2, S_2$ are the two quadrilaterals. Alternative formulation: Outside a convex quadrilateral $ ABCD$ with perpendicular diagonals, four squares $ AEFB, BGHC, CIJD, DKLA,$ are constructed (vertices are given in counterclockwise order). Prove that the quadrilaterals $ Q_1$ and $ Q_2$ formed by the lines $ AG, BI, CK, DE$ and $ AJ, BL, CF, DH,$ respectively, are congruent.
Attachments:
