Problem

Source: IMO Shortlist 1997, Q13

Tags: combinatorics, counting, Combinatorial Identity, bijection, binomial coefficients, IMO Shortlist



In town $ A,$ there are $ n$ girls and $ n$ boys, and each girl knows each boy. In town $ B,$ there are $ n$ girls $ g_1, g_2, \ldots, g_n$ and $ 2n - 1$ boys $ b_1, b_2, \ldots, b_{2n-1}.$ The girl $ g_i,$ $ i = 1, 2, \ldots, n,$ knows the boys $ b_1, b_2, \ldots, b_{2i-1},$ and no others. For all $ r = 1, 2, \ldots, n,$ denote by $ A(r),B(r)$ the number of different ways in which $ r$ girls from town $ A,$ respectively town $ B,$ can dance with $ r$ boys from their own town, forming $ r$ pairs, each girl with a boy she knows. Prove that $ A(r) = B(r)$ for each $ r = 1, 2, \ldots, n.$