A nonempty set $ A$ of real numbers is called a $ B_3$-set if the conditions $ a_1, a_2, a_3, a_4, a_5, a_6 \in A$ and $ a_1 + a_2 + a_3 = a_4 + a_5 + a_6$ imply that the sequences $ (a_1, a_2, a_3)$ and $ (a_4, a_5, a_6)$ are identical up to a permutation. Let $A = \{a_0 = 0 < a_1 < a_2 < \cdots \}$, $B = \{b_0 = 0 < b_1 < b_2 < \cdots \}$ be infinite sequences of real numbers with $ D(A) = D(B),$ where, for a set $ X$ of real numbers, $ D(X)$ denotes the difference set $ \{|x-y|\mid x, y \in X \}.$ Prove that if $ A$ is a $ B_3$-set, then $ A = B.$
Problem
Source: IMO Shortlist 2000, A6
Tags: algebra, number theory, Combinatorial Number Theory, Sequence, IMO Shortlist
21.08.2010 00:10
01.10.2020 14:56
CLAIM 1. If $a_i+a_j=a_k+a_l$ then $\{i,j\}=\{k,l\}$ Proof. Otherwise take $p\neq i,j,k,l$ then $a_p+a_i+a_j=a_p+a_k+a_l$, but $\{p,i,j\}\neq \{p,k,l\}$, contradiction. $\blacksquare$ Hence each pair of integer $(i,j)$ with $i>j\geq 0$ unique determine an element in $D(A)$. $\noindent\rule{15cm}{0.2pt}$ Now for some $i>j>0$ let \begin{align*} b_j&=a_{x_1}-a_{x_2}\\ b_i-b_j&=a_{x_3}-a_{x_4}\\ b_i&=a_{x_5}-a_{x_6}\\ \end{align*}Then $a_{x_1}+a_{x_3}+a_{x_6}=a_{x_2}+a_{x_4}+a_{x_5}$ Now $x_1\neq x_2$. If $x_1=x_4$ then $a_{x_3}+a_{x_6}=a_{x_2}+a_{x_5}$. From CLAIM 1 we have $\{x_3,x_6\}=\{x_2,x_5\}$. Since $x_5\neq x_6$, we have $x_5=x_3$ and $x_2=x_6$. Hence \begin{align*} b_j&=a_x-a_y\\ b_i-b_j&=a_z-a_x \qquad(1)\\ b_j&=a_z-a_y\\ \end{align*}for some $z>x>y$. Similarly if $x_1=x_5$ we have \begin{align*} b_j&=a_x-a_y\\ b_i-b_j&=a_y-a_z \qquad (2)\\ b_i&=a_x-a_z\\ \end{align*}for some $x>y>z$. $\noindent\rule{15cm}{0.2pt}$ Now if $(i,j)$ satisfies $(1)$ we will call it good and bad if it satisfies $(2)$. CLAIM 2. $(i,1)$ is good for all $i>1$. Proof. Let $b_i=a_x-a_y$ for some $x,y$. Firstly if there exists $j,k$ such that $(j,1)$ is good while $(k,1)$ is bad, then $b_j=a_p-a_y$ for some $p$ while $b_k=a_x-a_q$ for some $q$. Now from $(1),(2)$ that $q\neq y$ and $p\neq x$, hence $(j,k)$ is neither good or bad, contradiction. Now if all $i>1$ is bad then $b_j=a_x-a_z<a_x$, hence $B$ is bounded, contradiction. $\blacksquare$ $\noindent\rule{15cm}{0.4pt}$ Now for all $i.1$ let $b_i=a_{f(i)}-a_y$. Now we can compute all the elements in $D(B)$, indeed we have $$b_i-b_j=a_{f(i)}-a_{f(j)}$$where $f(1)=x$ and $f(0)=y$. Since $f$ is strictly increasing, and that it is surjective, we must have $f(i)=i$, hence $a_i=b_i$ as desired.